Eis Texas
INSTRUMENTS

BiCMOS Bus Interface Logic

Data Book

General Information

BiCMOS Circuits

2

BiCMOS Bus Interface Logic Data Book

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any semiconductor product or service identified in this publication without notice. Tl advises its customers to obtain the latest version of the relevant information to verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed.

TI assumes no liability for Tl applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Information contained in this databook supersedes all data for this technology published by TI in the United States of America before September 1988.

INTRODUCTION

The new BiCMOS bus interface family from Texas Instruments can reduce system power consumption by up to 25% while maintaining enhanced speed and output drive. This family's combination of bipolar and CMOS technologies permits high-speed switching and drive currents of 24 or 64 mA for commercial applications and 20 or 48 mA for military applications, which are necessary for the high-capacitive loads and backplanes found in today's systems:

The BiCMOS family of bus interface products is designated SN54/74BCT, which includes latches, buffers, drivers, and transceivers to provide pin-for-pin compatibility for easy upgrades.

Features and benefits include:

- Advanced bipolar performance - supports 25 - to $30-\mathrm{MHz}$ cycle times
- Ability to drive high-capacitive loads:

24- or $64-\mathrm{mA}$ output drive current (commercial)
20 - or $48-\mathrm{mA}$ output drive current (military)

- Low power consumption-approximately 95% power savings over bipolar devices
- Pin-for-pin compatibility with industry-standard functions

This book provides pertinent technical information on available BCT devices. Additionally, the General Information Section contains an alphanumerical index, functional index, and other useful information.
For more information on Texas Instruments BiCMOS bus interface products, please contact your local TI field sales office or authorized distributor, or call Texas Instruments at 1-800-232-3200.

Contents

Page
Numerical Index 1-3
Functional Index $1-5$
Glossary 1-7
Explanation of Function Tables $1-10$
D Flip-Flop and Latch Signal Conventions 1-12
Thermal Information 1-13

Device Type		Page No.	Device Type		Page No.	
SN54BCT125	SN74BCT125	2-3	SN54BCT2410	SN74BCT2410	\dagger	
SN54BCT126	SN74BCT126	2-3	SN54BCT2411	SN74BCT2411	\dagger	
SN54BCT240	SN74BCT240	$2-9$		SN74BCT2827A	2-73	C
SN54BCT241	SN74BCT241	2-13		SN74BCT2828A	2-73	0
SN54BCT244	SN74BCT244	2-17	SN54BCT25240	SN74BCT25240	\dagger	'\%
SN54BCT245	SN74BCT245	2-21	SN54BCT25241	SN74BCT25241	\dagger	©
SN54BCT299	SN74BCT299	\dagger	SN54BCT25244	SN74BCT25244	\dagger	E
SN54BCT323	SN74BCT323	\dagger	SN54BCT25245	SN74BCT25245	\dagger	2
SN54BCT373	SN74BCT373	2-25	SN54BCT25620	SN74BCT25620	\dagger	-
SN54BCT374	SN74BCT374	2-31	SN54BCT25621	SN74BCT25621	\dagger	5
SN54BCT455	SN74BCT455	\dagger	SN54BCT25622	SN74BCT25622	\dagger	
SN54BCT456	SN74BCT456	\dagger	SN54BCT25623	SN74BCT25623	\dagger	T0
SN54BCT533	SN74BCT533	\dagger	SN54BCT25640	SN74BCT25640	\dagger	8
SN54BCT534	SN74BCT534	\dagger	SN54BCT25641	SN74BCT25641	\dagger	${ }^{(1)}$
SN54BCT540	SN74BCT540	2-37	SN54BCT25642	SN74BCT25642	\dagger	C
SN54BCT541	SN74BCT541	2-41	SN54BCT25756	SN74BCT25756	\dagger	\pm
SN54BCT543	SN74BCT543	\dagger	SN54BCT25757	SN74BCT25757	\dagger	U
SN54BCT544	SN74BCT544	\dagger	SN54BCT25760	SN74BCT25760	\dagger	
SN54BCT563	SN74BCT563	\dagger	SN54BCT29818	SN74BCT29818	\dagger	
SN54BCT564	SN74BCT564	\dagger	SN54BCT29821	SN74BCT29821	\dagger	
SN54BCT573	SN74BCT573	\dagger	SN54BCT29822	SN74BCT29822	\dagger	
SN54BCT574	SN74BCT574	\dagger	SN54BCT29823	SN74BCT29823	\dagger	
SN54BCT620	SN74BCT620	2-45	SN54BCT29824	SN74BCT29824	\dagger	
SN54BCT623	SN74BCT623	2-51	SN54BCT29825	SN74BCT29825	\dagger	
SN54BCT640	SN74BCT640	2-57	SN54BCT29826	SN74BCT29826	\dagger	
SN54BCT646	SN74BCT646	\dagger		SN74BCT29827A	2-79	
SN54BCT64*	SN74BCT648	\dagger		SN74BCT29828A	2.79	
SN54BCT651	SN74BCT651	\dagger		SN74BCT29833	2-85	
SN54BCT652	SN74BCT652	\dagger		SN74BCT29834	2-85	
SN54BCT657	SN74BCT657	\dagger	SN54BCT29841	SN74BCT29841	t	
SN54BCT756	SN74BCT756	\dagger	SN54BCT29842	SN74BCT29842	\dagger	
SN54BCT757	SN74BCT757	\dagger	SN54BCT29843	SN74BCT29843	\dagger	
SN54BCT760	SN748CT760	\dagger	SN54BCT29844	SN74BCT29844	\dagger	
SN54BCT819	SN74BCT819	\dagger	SN54BCT29845	SN74BCT29845	\dagger	
SN54BCT956	SN74BCT956		SN54BCT29846	SN74BCT29846	\dagger	
SN54BCT957	SN74BCT957	\dagger		SN74BCT29853	2-93	
SN54BCT958	SN74BCT958	\dagger		SN74BCT29854	2-93	
SN54BCT959	SN74BCT959	\dagger		SN74BCT29861	2-101	
SN54BCT2240	SN74BCT2240	2-61		SN74BCT29862	\dagger	
SN54BCT2241	SN74BCT2241	2-65		SN74BCT29863	2-105	
SN54BCT2244	SN74BCT2244	2-69		SN74BCT29864	†	

${ }^{\dagger}$ For more information on these devices, contact the factory.
post office box 655012 - dallas, texas 75265

1

ио!̣ешлодиן ןеләиәэ

LINE DRIVERS AND BUS TRANSCEIVERS

BUFFERS AND DRIVERS WITH
OPEN-COLLECTOR OUTPUTS

DESCRIPTION	NUMBER OF BITS	DEVICE TYPE	AVAILABLE
Noninverting Buffers. Drivers	8	757	Δ
Inverting Buffers. Drivers	8	760	Δ

25- Ω DRIVERS WITH OPEN-COLLECTOR OUTPUTS

DESCRIPTION	NUMBER OF BITS	DEVICE TYPE	AVAILABLE
Noninverting Buffers, Drivers	8	' $^{\prime 25757}$	ム
	'25760	Δ	
Inverting Buffers, Drivers	8	$' 25756$	Δ

BUFFERS AND DRIVERS WITH
3-STATE OUTPUTS

DESCRIPTION	NUMBER OF BITS	DEVICE TYPE	AVAILABLE
Quad Buffers/ Drivers with	4	'125	4
Independent Output Controls		'126	4
Noninverting Buffers/Drivers	8	'24;	\bullet
W/Symmetrical.		'244	\bullet
\bar{G} Inputs		'541	\bullet
Inverting	8	$\checkmark 240$	-
Buffers/Drivers		'540	-
Noninverting	10	'2827	-
Buffers/Drivers		'29827	-
Inverting	10	'2828	-
Buffers/Drivers		'29828	-

25- Ω LINE DRIVERS WITH 3-STATE OUTPUTS

DESCRIPTION	NUMBER OF BITS	TYPE OF LOGIC	DEvice TYPE	AVAILABLE
Buffers/Drivers	8	True	'25241	Δ
W/Symmetrical \bar{G} Inputs		True	'25244	4
Buffers/Drivers	8	Inverting	'25240	4

BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

DESCRIPTION	NUMBER of bits	TYPE of LOGIC	DEVICE TYPE	AVAILABLE
Transceivers	8	True	245	\bullet
		Inverting	620	-
		True	'623	4
		Inverting	640	4
Bus Transceivers with Registers	8	True	'543	\triangle
		Inverting	544	Δ
		True	646	\triangle
		Inverting	'648	4
		Inverting	651	4
		True	'652	Δ
Bus Transceivers with Parity Checker/ Generator	8 to 9	True	'29833	\bullet
		Inverting	'29834	\bullet
		True	'29853	-
		Inverting	'29854	-
Transceivers	9	True	'29863	\bullet
		Inverting	'29864	4
	10	True	'29861	\bullet
		Inverting	'29862	-
Latched Transceivers	8		'956	4
			'957	4
			'958	4
			'959	4

25- Ω BUS TRANSCEIVERS

DESCRIPTION	NUMBER OF BITS	$\begin{gathered} \text { TYPE } \\ \text { OF LOGIC } \\ \hline \end{gathered}$	PORT CONFIGURATION	DEVICE TYPE	available
Bus Transceivers	8	True	$\begin{aligned} & \text { 3.b. }+ \text { e: } A=25 \Omega \\ & \text { Line } \begin{array}{l} \text { n } \\ \end{array} \\ & \hline \end{aligned}$	'25245	4
Bus Transceivers	8	Inverting	$\begin{aligned} & \begin{array}{l} \text { 3-State; }, \\ \text { Line Drive } \end{array} \end{aligned}$	'25620	4
		True	$B=3 \text {-State; } A=25 \Omega$ Drive, Open-Collector	'25621	4
		Inverting	$B=3$-State; $A=25 \Omega$ Drive, Open-Collector	'25622	4
		True	$\text { 3-State; } A=25 n$ Line Drive	'25623	\triangle
Bus Transceivers	8	Inverting	$\begin{array}{\|l} \hline \text { 3-State; } A=25 \Omega \\ \text { Line Drive } \\ \hline \end{array}$	'25640	\triangle
		True	$B=3 \text {-State; } A=25 \Omega$ Line Drive, Open-Collector	'25641	Δ
		Inverting	$B=3 \cdot \text { State } A=25 \Omega$ Line Drive. Open-Collector	'25642	-

BUFFERS AND LINE DRIVERS/ MOS MEMORY DRIVERS

description	number OF BITS	DEVICE TYPE	AVAILABLE
Bus Drivers (Series Resistors)	8	2240	A
		2241	4
		2244	4
Buffers (Series Resistors)	11	2410	4
		2411	\triangle

- Denotes available product.

A Denotes planned new products. For product availability on these devices, contact the factory.

FLIP-FLOPS

FLIP-FLOPS WITH 3-STATE OUTPUTS

DESCRIPTION	NUMBER OF BITS	TYPE OF LOGIC	DEvice TYPE	AVAILABLE
D-Type, Edge-Triggered	8	True	'374	4
		Inverting	'534	4
		Inverting	'564	Δ
		True	'574	Δ
D. Type	10	True	'29821	Δ
		Inverting	'29822	Δ

LATCHES AND REGISTERS
LATCHES WITH 3-STATE OUTPUTS

DESCRIPTION	NUMBER OF BITS	TYPE OF LOGIC	DEVICE TYPE	AVAILABLE
Transparent	8	True	'373	4
			'573	Δ
Transparent	8	Inverting	'533	4
			'564	Δ
Transparent	10	True	'29841	4
		Inverting	'29842	Δ
	9	True	'29843	A
		Inverting	'29844	Δ
	8	True	'29845	4
		Inverting	'29846	4

REGISTERS

SHIFT REGISTERS

DESCRIPTION	NUMBER OF BITS	MODES				DEVICE TYPE	AVAILABLE
		S-	S	L	H		
Parallel-In	8	X	X	X	X	'299	4
BiDirectional		X	X	X	X	'323	4

NOTE: Modes; S. $=$ S.R, S $=$ S-L, L $=$ Load, $\mathrm{H}=$ Hold
SIGN-PROTECTED REGISTERS

DESCRIPTION	NUMBER OF BITS	MODES				DEVICE TYPE	AVAILABLE
		S-	S	L	H		
Sign-Protected Registers	8	x		X	X	'322	-

OTHER REGISTERS

DESCRIPTION	NUMBER OF BITS	DEVICE TYPE	AVAILABLE
Pipeline Register	8	'819	Δ
Diagnostic/ Pipeline Register		'29818	A
Registers	9	'29823	A
		'29824	A
	8	'29825	A
		'29826	4

- Denotes available product.

A Denotes planned new products. For product availability on these devices, contact the factory.

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY LETTER SYMBOLS)
$C_{i} \quad$ Input capacitance
The internal capacitance at an input of the device.

Co Output capacitance
The internal capacitance at an output of the device.
$\mathrm{C}_{\text {pd }} \quad$ Power dissipation capacitance
Used to determine the no-load dynamic power dissipation per logic function (see individual circuit pages):
$P_{D}=C_{p d} V_{C C}{ }^{2 f+I C C} V_{C C}$.
$f_{\text {max }} \quad$ Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.

ICC Supply current
The current into* the VCC supply terminal of an integrated circuit.
IIH High-level input current
The current into* an input when a high-level voltage is applied to that input.
ILL Low-level input current
The current into* an input when a low-level voltage is applied to that input.
IOH High-level output current
The current into* an output with input conditions applied that, according to the product specification, will establish a high level at the output.

IOL Low-level output current
The current into* an output with input conditions applied that, according to the product specification, will establish a low level at the output.

IOZ Off-state (high-impedance-state) output current (of a three-state output)
The current flowing into* an output having three-state capability with input conditions established that, according to the production specification, will establish the high-impedance state at the output.
$\mathbf{t a}_{\mathbf{a}}$
Access time
The time interval between the application of a specified input pulse and the availability of valid signals at an output.

[^0]$t_{\text {dis }}$ ио!!ешлоји ןедәиәэ

Abstract

Disable time (of a three-state or open-collector output) The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from either of the defined active levels (high or low) to a high-impedance (off) state. NOTE: For 3-state outputs, $\mathrm{t}_{\text {dis }}=\mathrm{t}_{\mathrm{tPHZ}}$ or tpLZ. Open-collector outputs will change only if they are low at the time of disabling so $t_{\text {dis }}=t_{\text {PLH }}$.

Enable time (of a three-state or open-collector output)
The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from a high-impedance (off) state to either of the defined active levels (high or low).
NOTE: In the case of memories, this is the access time from an enable input (e.g., $\overline{\mathrm{G}}$). For 3 -state outputs, $t_{\text {en }}=$ tpZH $^{\text {or tPZL. Open-collector outputs will change only if they are responding to data that would }}$ cause the output to go low so, for them, $\mathrm{t}_{\mathrm{en}}=\mathrm{t}_{\mathrm{pHL}}$.
th Hold time
The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.
NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
2. The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is guaranteed.
$t_{p d} \quad$ Propagation delay time
The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level. ($t_{p d}=t_{\text {PHL }}$ or $\left.\mathrm{tPLH}^{\prime}\right)$.
tPHL Propagation delay time, high-to-low level output
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.
tPHZ. Disable time (of a three-state output) from high level
The time interval between the specified reference points on the input and the output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.
tPLH Propagation delay time, low-to-high-level output
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.
tPLZ Disable time (of a three-state output) from low level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.
tPZH Enable time (of a three-state output) to high level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level.
tPZL Enable time (of a three-state output) to low level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.

The following symbols are used in function tables on TI data sheets:

H	$=$ high level (steady state)
L	$=$ low level (steady state)
\uparrow	$=$ transition from low to high level
\downarrow	$=$ transition from high to low level
\rightarrow	$=$ value/level or resulting value/level is routed to indicated destination
X	$=$ value/level is re-entered
Z	$=$ off (high-impedance) state of a 3-state-output
$\mathrm{a} . \mathrm{h}$	$=$ the level of steady-state inputs at inputs A through H respectively
Q_{0}	$=$ level of Q before the indicated steady-state input conditions were established
$\overline{\mathrm{O}}_{0}$	$=$ complement of Q_{0} or level of $\overline{\mathrm{C}}$ before the indicated steady-state input conditions were established
Q_{n}	$=$ level of Q before the most recent active transition indicated by \downarrow or \uparrow
\square	$=$ one high-level pulse
\square	$=$ one low-level pulse
TOGGLE	$=$ each output changes to the complement of its previous level on each active transition indicated by
\square	

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

If, in the input columns, a row contains H, L, and/or X together with \uparrow and/or \downarrow, this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level (H, L, Q_{0}, or $\left.\overline{\mathrm{O}}_{0}\right)$, it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as a pulse, $\square \square$ or \square, the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

Among the most complex function tables in this book are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4 -bit bidirectional universal shift register, e.g., type SN74194.

FUNCTION TABLE													
INPUTS										OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				a_{A}	O_{B}	${ }^{0}{ }_{C}$	0_{0}
	S1	so		LEFT	RIGHT	A	B	C	D				
L	X	x	X	X	X	X	X	X	X	L	L	L	L
H	X	x	L	x	x	x	X	X	x	$\mathrm{a}_{\text {AO }}$	$\mathrm{O}_{\text {B0 }}$	O_{Co}	O_{DO}
H	H	H	\dagger	x	X	a	b	c	d	a	b	c	d
H	L	H	\dagger	x	H	X	X	x	x	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	Q_{Cn}
H	L	H	\dagger	\times	L	x	X	X	x	L	$\mathrm{a}_{\text {A }}$	Q_{Bn}	O_{Cn}
H	H	L	i	H	x	x	\times	x	x	$a_{B n}$	${ }^{0} \mathrm{Cn}$	O_{Dn}	H
H	H		1	L	X	X	X	X	X	a_{Bn}	${ }^{0} \mathrm{Cn}$	$Q_{\text {Dn }}$	L
H	L	L	X	X	X	X	x	X	x	$\mathrm{Q}_{\text {A }}$	$\mathrm{a}_{\text {B0 }}$	$\mathrm{O}_{\mathrm{C} 0}$	O_{DO}

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs will occur while the clock remains high or on the high-to-low transition of the clock.

The third line of the table represents synchronous parallel loading of the register and says that if S1 and S0 are both high then, without regard to the serial input, the data entered at A will be at output Q_{A}, data entered at B will be at Q_{B}, and so forth, following a low-to-high clock transition.

The fourth and fifth lines represent the loading of high- and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_{A} is now at Q_{B}, the previous levels of Q_{B} and Q_{C} are now at Q_{C} and Q_{D} respectively, and the data previously at Q_{D} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is low and S0 is high and the levels at inputs A through D have no effect.

The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_{B} is now at Q_{A}, the previous levels of Q_{C} and Q_{D} are now at Q_{B} and Q_{C}, respectively, and the data previously at Q_{A} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S 1 is high and S 0 is low and the levels at inputs A through D have no effect.

The last line shows that as long as both mode inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.

The truth table functional tests do not reflect all possible combinations or sequential modes.

D FLIP.FLOP AND LATCH SIGNAL CONVENTIONS

D flip-flop and latch signal conventions

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop or latch and to draw its logic symbol based on the assumption of true data (D) inputs. Outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called $\overline{\mathrm{O}}$. An input that causes a Q output to go high or a $\overline{\mathrm{Q}}$ output to go low is called Preset (PRE). An input that causes a $\overline{\mathrm{Q}}$ output to go high or a Q output to go low is called Clear (CLR). Bars are used over these pin names (PRE and CLR) if they are active-low.

The devices on several data sheets are second-source designs, and the pin-name conventions used by the original manufacturers have been retained. That makes it necessary to designate the inputs and outputs of the inverting circuits $\overline{\mathrm{D}}$ and Q .
In some applications, it may be advantageous to redesignate the data input from \bar{D} to $\overline{\mathrm{D}}$ or vice versa. In that case, all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbols. Arbitrary pin numbers are shown in parentheses.

The figures show that when Q and $\overline{\mathrm{Q}}$ exchange names, the Preset and Clear pins also exchange names. The polarity indicators (\triangle) on $\overline{\operatorname{PRE}}$ and $\overline{\mathrm{CLR}}$ remain, as these inputs are still active-low, but the presence or absence of the polarity indicator changes at \bar{D} (or $\overline{\mathrm{D}}$), Q , and $\overline{\mathrm{C}}$. Pin 5 (Q or $\overline{\mathrm{C}}$) is still in phase with the data input (D or \bar{D}); their active levels change together.

In digital system design, consideration must be given to thermal management of components. The small size of the "small outline" package makes this even more critical. Figure 1 shows the thermal resistance of these packages for various rates of air flow.

The thermal resistances in Figure 1 can be used to approximate typical and maximum virtual junction temperatures for the BiCMOS family. In general, the junction temperature for any device can be calculated using Equation 1.

Typical junction temperature can be calculated using Equation 1 directly with typical values of ICC taken from the data sheets and VCC $=5$ volts. To calculate maximum junction temperature, it is necessary to take into account the spread of ICC values for a population.
Maximum junction temperature for all 54BCT parts can be calculated using Equation 1 with ICC being the maximum value specified on the data sheet and $V_{C C}=5.5$ volts. In fact, ICC for Series 54 devices at the temperature extremes of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ will be higher than for a Series 74 device at the temperature extremes of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. This is

JUNCTION-TO-AMBIENT THERMAL RESISTANCE

FIGURE 1 reflected in the limits specified for 74BCT devices, which are less than those specified for 54BCT devices. The BCT family data sheets give a single maximum value for ICC. If that value is used to calculate maximum junction temperature for series 74 devices, an unrealistically high value will result. Instead, Equation 2 can be used. This uses the factor 1.31 to scale the typical value of ICC up to a practical maximum value for process variations and thermal effects.

$$
\begin{equation*}
T_{J}=R_{\theta J A}\left(V_{C C} \cdot I_{C C}+N \cdot I_{O L} \cdot V_{O L}\right)+T_{A} \tag{1}
\end{equation*}
$$

where

$$
T_{J}=\text { virtual junction temperature }
$$

$R_{\theta J A}=$ thermal resistance, junction to ambient air
$\mathrm{V}_{\mathrm{C}}=$ supply voltage (5 V for typical, 5.5 V for maximum)
ICC = supply current
$\mathrm{N}=$ the number of outputs
lOL = the low-level output current
$\mathrm{V}_{\mathrm{OL}}=$ the low-level output voltage
$\mathrm{T}_{\mathrm{A}}=$ the ambient air temperature

$$
\begin{equation*}
T J_{\max }=R_{\theta J A}\left(5.5 \cdot 1.31 \cdot I_{C C t y p}+N \cdot I_{O L} \cdot V_{O L}\right)+T_{A} \tag{2}
\end{equation*}
$$

1
ио!ңешлодй Іеләиәэ

General Information

- State of the Art BiCMOS Design Significantly Reduces ICCZ
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- Package Options Include Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These bus buffers feature independent line drivers with three-state outputs. Each 'BCT125 output is disabled when the associated $\overline{\mathrm{G}}$ is high, and each 'BCT126 output is disabled when the associated G is low.

The SN54BCT125 and SN54BCT126 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT125 and SN74BCT126 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLES
'BCT125
(EACH BUFFER)

INPUTS		OUTPUT
$\mathbf{~} \mathbf{G}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

'BCT126
(EACH BUFFER)

INPUTS		OUTPUT
\mathbf{G}	\mathbf{A}	
H	H	H
H	L	L
L	X	Z

[^1]SN54BCT125, SN54BCT126 . . . J PACKAGE SN74BCT125, SN74BCT126 . . . N PACKAGE
(TOP VIEW)

${ }^{\dagger} \overline{\mathrm{G}}$ on 'BCT125; G on 'BCT126
logic symbols ${ }^{\ddagger}$
'BCT125

'BCT126

${ }^{\ddagger}$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagrams (positive logic)

'BCT126

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, VCC . - 0.5 V to 7		
Input voltage . - 0.5 V 隹 7 V		
Voltage applied to any output in the disabled or power-off state - 0.5 V to 5.5 V		
Voltage applied to any output in the high state . - 0.5 V to $\mathrm{V}_{\text {cC }}$		
Current into any output in the low state	te: SN54BCT125, SN54BCT126	
	SN74BCT125, SN74BCT126	128 mA
Operating free-air temperature range:	SN54BCT125, SN54BCT126	${ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	SN74BCT125, SN74BCT126	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

${ }^{\dagger}$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54BCT125 SN54BCT126			SN74BCT125 SN74BCT126			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
IOH	High-level output current			-12			-15	mA
I_{O}	Low-level output current			48			64	mA
TA	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT125 SN54BCT126			SN74BCT125 SN74BCT126			UNIT
			MIN	TYPt ${ }^{\text {t }}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		$1 \mathrm{OH}=-12 \mathrm{~mA}$	2	3.2					
		$1 \mathrm{OH}=-15 \mathrm{~mA}$				2	3.1		
$\mathrm{V}_{\text {OL }}$	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$		0.38	0.55				V
		$\mathrm{IOL}=64 \mathrm{~mA}$					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
IIH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
1 LL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1			-1	mA
IOZH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
10ZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los^{\ddagger}	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-100		-225	-100		-225	mA
${ }^{\text {ICCH }}$	$V_{C C}=5.5 \mathrm{~V}$	Outputs open	19				19		mA
ICCL				46		46			
ICCZ			6			6			

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SN54BCT125, SN54BCT126
SN74BCT125, SN74BCT126
QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
'BCT125 switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & R 2=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline{ }^{\prime} \text { BCT125 } \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX }^{\dagger} \end{aligned}$				UNIT
						SN5		SN		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y		3.3						ns
tPHL				1.8						
tPZH	$\overline{\mathrm{G}}$	Y		6.4						ns
tPZL				7.5						
tphz	$\overline{\mathrm{G}}$	Y		6						ns
tplz				6.7						

'BCT126 switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{gathered} V_{C C}=5 \mathrm{~V}, \\ C_{L}=50 \mathrm{pF}, \\ R 1=500 \Omega, \\ R 2=500 \Omega, \\ T_{A}=25^{\circ} \mathrm{C} \\ \hline{ }^{\prime}{ }^{\text {BCT126 }} \end{gathered}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX }^{\dagger} \end{aligned}$				UNIT
								SN		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y		3.3						ns
tpHL				1.8						
tPZH	G	Y		6.4						ns
tPZL				7.5						
tPHZ	G	Y		6						ns
tPLZ				6.7						

[^2]
PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
enable And disable times, threest ate outputs

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Input pulses are supplied by generators having the following characteristics: $P R R \geq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \mathrm{n}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one input transition per measurement.

FIGURE 1. LOAD CIRCUIT AND VOLTAGE WAVEFORMS

- State of the Art BiCMOS Design Significantly Reduces ICCZ
- Comparable Speed and Improved Power Performance Relative to 54F/74F240
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300 -mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'BCT241 and 'BCT244, these devices provide a choice of selected combinations of inverting and noninverting outputs, symmetrical \bar{G} (active-low output control) inputs, and complementary G and $\overline{\mathrm{G}}$ inputs. These devices feature high fan-out and improved fan-in.
The SN54' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74' family is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT240 . . . FK PACKAGE (TOP VIEW)

logic symbol ${ }^{\dagger}$

[^3]
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

Supply voltage, VCC		
Voltage applied to any output in the disabled or power-off state		
Voltage applied to any output in the high state		
Operating free-air temperature ranges: SN54BCT240 . $-55^{\circ} \mathrm{C}$ to 125°		
	SN74BCT240	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
		$65^{\circ} \mathrm{C}$ to 150

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54BCT240			SN74BCT240			UNIT
		MIN	NOM	MAX	MiN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
IOH	High-level output current			-12			-15	mA
IOL	Low-level output current			48			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT240			SN74BCT240			UNIT
			MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\text {O }}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		v
		$1 \mathrm{OH}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
$\mathrm{VOL}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$1 \mathrm{OL}=48 \mathrm{~mA}$		0.38	0.55				V
		$1 \mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
1 IH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1			-1	mA
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}_{\text {, }}$	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
IozL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-100		-225	-100		-225	mA
${ }^{\text {ICCH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Outputs open		19	31		19	31	mA
ICCL				46	71		46	71	
ICCz				6	12		6	12	

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \text { BCT240 } \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX } \end{aligned}$				UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	3.3	4.8	1	6.4	1	5.6	ns
tPHL			0.4	1.8	3.5	0.4	4.5	0.4	4	
tPZH	$\overline{\mathrm{G}}$	Y	2	6.4	8.6	2	11	2	10	ns
tPZL			2	7.5	9.6	2	11.7	2	11.1	
tPHZ	$\overline{\mathrm{G}}$	Y	2	6	8	2	9.5	2	8.8	ns
tplZ			2	6.7	8.7	2	13.1	2	10.6	

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
$t_{\text {PLL }}$	Open
tPHL	Open
tPZH	Open
tPZL	Closed
$t_{\text {tPHZ }}$	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A, C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

- State of the Art BiCMOS Design Significantly Reduces ICCZ
- Comparable Speed and Improved Power Performance Relative to 54F/74F241
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Package Options Include Plastic "Small Outline'" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'BCT240 and 'BCT244, these devices provide the choice of selected combinations of inverting outputs, symmetrical $\overline{\mathrm{G}}$ (active-low output control) inputs, and complementary G and \bar{G} inputs.

The SN54' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74. family is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol \dagger

[^4]

SN54BCT241 . . . FK PACKAGE (TOP VIEW)

FUNCTION TABLE

OUTPUT CONTROL	DATA INPUT	OUTPUT	OUTPUT CONTROL	DATA INPUT	OUTPUT
$1 \bar{G}$	$\mathbf{1 A}$	$\mathbf{1 Y}$	$\mathbf{2 G}$	$2 A$	$\mathbf{2 Y}$
H	X	Z	L	X	Z
L	L	L	H	L	L
L	H	H	H	H	H

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions' is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54BCT241			SN74BCT241			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$V_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
OH	High-level output current			-12			-15	mA
${ }^{1} \mathrm{OL}$	Low-level output current			48			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

SN54BCT241, SN74BCT241 OCTAL bUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT241			SN74BCT241			UNIT
			MIN	TYP ${ }^{\text {t }}$	MAX	MIN	TYP ${ }^{\text {T }}$	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	2.4	3.3		2.7	3.3		V
		$\mathrm{I}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}^{\mathrm{OL}}=48 \mathrm{~mA}$		0.38	0.55				V
		$1 \mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
1 IH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1			-1	mA
IOZH	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los^{\ddagger}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-100		-225	-100		-225	mA
ICCH	$V_{C C}=5.5 \mathrm{~V}$ Outputs open	Outputs high		23	40		23	40	mA
ICCL		Outputs low		53	75		53	75	mA
ICCZ		Outputs disabled		4	10		4	10	mA

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \text { 'BCT241 } \\ & \hline \end{aligned}$							UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1.1	2.5	4.2	0.9	4.8	0.9	4.6	ns
tPHL			1.7	3	4.8	1.3	5.6	1.5	5.4	
tpZ	G or $\overline{\mathrm{G}}$	Y	2	5.7	8.9	2	11.3	2	10.3	ns
tPZL			2	5.2	8.7	2	10.2	2	9.8	
tpHz	G or $\overline{\mathrm{G}}$	Y	2	5.8	8.2	2	10.1	2	9.7	ns
tPLZ			2	7	9.4	2	13.4	2	11.7	

${ }^{\S}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
${ }^{\text {tPLH }}$	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tplZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $t_{f} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

FIGURE 1. SWITCHING CHARACTERISTICS

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce DC Loading
- State of the Art BiCMOS Design Significantly Reduces ICCZ
- Comparable Speed and Improved Power Performance Relative to 54F/74F244
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- Package Options Include "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'BCT240 and 'BCT241, these devices provide the choice of selected combinations of inverting outputs, symmetrical \bar{G} (active-low output control) inputs, and complementary G and \bar{G} inputs.
The SN54BCT244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT244 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol ${ }^{\dagger}$

[^5]SN54BCT244 . . . J PACKAGE
SN74BCT244 . . DW OR N PACKAGE
(TOP VIEW)

SN54BCT244 . . JK PACKAGE
(TOP VIEW)

Function table

OUTPUT CONTROL	DATA INPUT	OUTPUT
$\mathbf{1} \overline{\mathrm{G}}, \mathbf{2} \overline{\mathrm{G}}$	A	Y
H	X	Z
L	L	L
L	H	H

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, VCC . 0.0 .5 V to 7 V		
Input voltage		-0.5 V to 7 V
Voltage applied to any output in the disabled or power-off state -0.5 V to 5.5 V		
Voltage applied to any output in the high state . -0.5 V to VCC		
Current into any output in the low state	te: SN54BCT244	96 mA
	SN74BCT244	128 mA
Operating free-air temperature range:	SN54BCT244	$55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	SN74BCT244	. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range		$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

†Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54BCT244			SN74BCT244			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$V_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
${ }_{1 / K}$	Input clamp current			-18			-18	mA
${ }_{\mathrm{OH}}$	High-level output current			-12			-15	mA
$\mathrm{IOL}^{\text {O }}$	Low-level output current			48			64	mA
T_{A}	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT244			SN74BCT244			UNIT
			MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\text {a }}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		$\mathrm{IOH}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{IOH}^{\text {O }}=-15 \mathrm{~mA}$				2	3.1		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$1 \mathrm{OL}=48 \mathrm{~mA}$		0.38	0.55				V
		$1 \mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
1 IH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1			-1	mA
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-100		-225	-100		-225	mA
${ }^{\text {ICCH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		23	40		23	40	mA
ICCL		Outputs low		53	80		53	80	mA
ICCZ		Outputs disabled		4	10		4	10	mA

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \text { BCT244 } \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF} . \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\mathrm{MIN}^{2} \text { to } \mathrm{MAX}^{\S} \\ & \hline \end{aligned}$				UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1.2	2.5	4.4	0.9	5.3	0.7	5	ns
tPHL			1.7	3.2	5	1.4	6	1.4	5.5	
tPZH	$\overline{\mathrm{G}}$	Y	2	5.7	7.8	2	9	2	8.7	ns
tPZL			2	5.9	8.1	2	9.4	2	8.9	
tPHZ	$\overline{\mathrm{G}}$	Y	2	5.4	6.7	2	8	2	7.7	ns
tPLZ			2	6.1	7.6	2	9.8	2	8.9	

${ }^{\boldsymbol{5}}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SN54BCT244, SN74BCT244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
${ }^{\text {tPHL }}$	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

FIGURE 1. SWITCHING CHARACTERISTICS

SN54BCT245, SN74BCT245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

- ВіСмOS Design Substantially Reduces Standby Current
- 3-State Outputs Drive Bus Lines Directly
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- Comparable Speed and Improved Power Performance Relative to SN54F245, SN74F245
- Package Options Include Plastic "Small Outline'' Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic $300-\mathrm{mil}$ DIPs

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. Implementing the control function minimizes external timing requirements.

The devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (\bar{G}) can disable the device so that the buses are effectively isolated.

The SN54BCT245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT245 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT245 . . . FK PACKAGE (TOP VIEW)

FUNCTION TABLE

ENABLE $\overline{\mathbf{G}}$	DIRECTION CONTROL DIR	OPERATION
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for DW, J, and N packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC}		
Voltage applied to any output in the disabled or power-off state -0.5 V to 5.5 V		
Voltage applied to any output in the high state . -0.5 V to Vcc		
Current into any output in the low state	te: SN54BCT245	96 mA
	SN74BCT245	128 mA
Operating free-air temperature range:	SN54BCT245	$55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	SN74BCT245	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
recommended operating conditions

			SN54BCT245			SN74BCT245			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	\checkmark
IIK	Input clamp current				-18			-18	mA
IOH	High-level output current	A1-A8			-3			-3	mA
		B1-B8			-12			-15	mA
IoL	Low-level output current	A1-A8			20			24	mA
		B1-B8			48			64	mA
TA	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range, VCC $=5.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54BCT245			SN74BCT245			UNIT		
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\text {f }}$	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$			-1.2			-1.2	V
$\mathrm{VOH}_{\mathrm{OH}}$	Any A	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4		2.5	3.4		V		
			$1 \mathrm{OH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3				
	Any B		$\mathrm{IOH}^{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3				
			$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2							
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1				
V_{OL}	Any A	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}^{\text {a }}$ 20 mA		0.3	0.5				V		
			$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5			
	Any B		$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.38	0.55						
			$\mathrm{IOL}=64 \mathrm{~mA}$					0.42	0.55			
$1_{1}{ }^{\text {a }}$	A and B	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
	DIR and $\overline{\mathrm{G}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1			
$\mathrm{IH}^{ \pm}$	A and B	$V_{C C}=5.5 \mathrm{~V}$,	$V_{1}=2.7 \mathrm{~V}$			70			70	$\mu \mathrm{A}$		
	DIR and \bar{G}					20			20			
IL	A and B	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.65			-0.65	mA		
	DIR and \bar{G}					-1.2			-1.2			
los^{5}	Any A	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-60		-150	-60		-150	mA		
	Any B			-100		-225	-100		-225			
ICCH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	See Note 1		36	57		36	57	mA		
${ }^{\text {I CCL }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	See Note 1		57	90		57	90			
ICcz		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$			10	15		10	15			
$\mathrm{C}_{\text {in }}$	$\overline{\mathrm{G}}$ and DIR	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{l}}=2.5 \mathrm{~V}$ or 0.5 V		7			7		pF		
ClO_{10}	A to B				9			9				
ClO_{10}	B to A				12			12				

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ For I / O ports, the parameters $I_{I H}$ and $I_{I L}$ include the off-state output current.
${ }^{\S}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed 10 ms .
NOTE 1: $\mathrm{I}_{\mathrm{CCH}}$ and ICCL are measured in the A to B mode.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R}_{2}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX } \\ & \hline \end{aligned}$				UNIT
				CT24						
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	4.4	6	1	7.2	1	7	ns
tPHL			1.5	4.8	6.6	1.5	7.6	1.5	7	
tPZH	$\overline{\mathrm{G}}$	A or B	1.5	8	9.4	1.5	11.2	1.5	10.9	ns
tPZL			1.5	8	10.2	1.5	11.8	1.5	11.6	
tpHz	$\overline{\mathrm{G}}$	A or B	1.5	5.8	8.3	1.5	9.7	1.5	9.3	ns
tPLZ			1.5	5.1	7.8	1.5	9.6	1.5	9.1	

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: $\mathrm{PRR}_{\mathrm{s}} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.

FIGURE 1. SWITCHING CHARACTERISTICS

- 8-Latches in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- State of the Art BiCMOS Design Significantly Reduces ICC
- Comparable Speed and Improved Power Performance Relative to 54F/74F373
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight latches of the 'BCT373 are transparent D-type latches. While the enable (C) is high, the Q outputs will follow the data (D) inputs. When the enable is taken low, the Q outputs will be latched at the levels that were set up at the D inputs.
A buffered output-control $\overline{(O C)}$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.
The output control $\overline{(O C)}$ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54BCT373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT373 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT373 . . . FK PACKAGE (TOP VIEW)

FUNCTION TABLE
(each latch)

INPUTS			OUTPUT
OC	ENABLE C	D	\mathbf{Q}
L	H	H	H
L	H	L	L
L	L	X	Q_{O}
H	X	X	Z

logic symbol \dagger

tThis symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12
Pin numbers shown are for DW, J, and N packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage, VCC	-0.5 V to 7 V
Input voltage	-0.5 V to 7 V
Voltage applied to any output in the disabled or powe	-0.5 V to 7 V
Voltage applied to any output in the high state	-0.5 V to V_{CC}
Operating free-air temperature range: SN54BCT373	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74BCT373	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54BCT373, SN74BCT373 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS
recommended operating conditions

\left.| | SN54BCT373 | | SN74BCT373 | | UNIT | | |
| :--- | :--- | ---: | ---: | ---: | ---: | :---: | :---: |
| | | MIN | NOM | MAX | | NOM | MAX |$\right)$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54BCT373			SN74BCT373			UNIT
				MIN	TYp \dagger	MAX	MIN	TYP ${ }^{\text {¢ }}$	MAX	
$V_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2			-1.2	V
VOH^{\ddagger}	$V_{C C}=4.5 \mathrm{~V}$		$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
			$1 \mathrm{OH}=-12 \mathrm{~mA}$	2	3.2					
			$1 \mathrm{OH}=-15 \mathrm{~mA}$				2	3.1		
VOL	$V_{C C}=4.5 \mathrm{~V}$		$\mathrm{OL}=48 \mathrm{~mA}$		0.38	0.55				V
			$\mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50			50	$\mu \mathrm{A}$
Iozl	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50			-50	$\mu \mathrm{A}$
1	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$								mA
${ }^{1} \mathrm{H}$	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
1 LL	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6			-0.6	mA
los ${ }^{\text {§ }}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$		-100		-225	-100		-225	mA
1 CCL	$V_{C C}=5.5 \mathrm{~V}$				37			37		mA
${ }^{1} \mathrm{CCH}$	$V_{C C}=5.5 \mathrm{~V}$				2			2		mA
${ }^{\text {I CCZ }}$	$V_{C C}=5.5 \mathrm{~V}$				3.5			3.5		mA

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.
\ddagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.

timing requirements

		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{V}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & T_{A}=\text { MIN to MAXt } \end{aligned}$				UNIT
		'BCT373		SN54BCT373		SN74BCT373		
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\text {su }}$	Setup time, Data before enable C							ns
th	Hold time, Data before enable C							ns
$\mathrm{t}_{\text {w }}$	Pulse duration, Enable C high		.					ns

\dagger For conditions as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{C C}=5 \mathrm{~V}, \\ C_{L}=50 \mathrm{pF}, \\ R 1=500 \Omega, \\ R 2=500 \Omega, \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \hline \text { BCT373 } \end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}} \text { MIN to MAXt } \end{aligned}$				UNIT
						SN54BCT373		SN74BCT373		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpLH	D	Any \bar{Q}		4.8						ns
tpHL	D	Any $\overline{\mathrm{Q}}$		6.2						ns
tPLH	C	Any \bar{Q}		5						ns
tpHL	C	Any \bar{Q}		5.2						ns
tPZH	$\overline{\mathrm{OC}}$	Any \bar{Q}		6.5						ns
tPZL	$\overline{\mathrm{OC}}$	Any \bar{Q}		7.7						ns
tphz	$\overline{\mathrm{OC}}$	Ȧny \bar{Q}		4.6						ns
tplz	$\overline{O C}$	Any \bar{Q}		3.7						ns

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.
PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL.	Open
tPZH	Open
$t^{\text {tPZL }}$	Closed
tPHZ	Open
tPLZ	Closed

LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
WAVEFORM 2
(See Note B)

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS
NOTES: A. C_{L} includes probe and jig capacitance.
B. Input pulses are supplied by generators having the following characteristics: PRR $\geq 10 \mathrm{MHz}, Z_{o}=50 \Omega, t_{r}=2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one input transition per measurement.
FIGURE 1. SWITCHING CHARACTERISTICS

- 8 D-Type Flip-Flops in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- Buffered Control Inputs
- State of the Art BiCMOS Design Significantly Reduces ICC
- Comparable Speed and Improved Power Performance Relative to 54F/74F374
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V per MIL-STD-883C Method 3015
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300 -mil DIPs

description

These 8 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight flip-flops of the 'BCT374 are edgetriggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic levels that were set up at the D inputs.
A buffered output-control $\overline{(\mathrm{OC})}$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.
The output control $\overline{(\mathrm{OC})}$ does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN54BCT374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT374 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT374，SN74BCT374
 OCTAL D－TYPE EDGE－TRIGGERED FLIP－FLOPS
 WITH 3－STATE OUTPUTS

logic symbolt

${ }^{\dagger}$ This symbol is in accordance with ANSIIIEEE Std 91－1984 and IEC Publication 617－12．
Pin numbers shown are for DW，J，or N packages．

logic diagram（positive logic）

recommended operating conditions

\left.| | SN54BCT374 | | SN74BCT374 | | UNIT | | |
| :--- | :--- | ---: | ---: | ---: | ---: | :---: | :---: |
| | | MIN | NOM | MAX | | NOM | MAX |$\right)$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54BCT374			SN74BCT374			UNIT
				MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYPt	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1=-18 \mathrm{~mA}$				-1.2			-1.2	V
VOH	$V_{C C}=4.5 \mathrm{~V}$		$1 \mathrm{OH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
			$\mathrm{IOH}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
			$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$				2	3.1		
VOL	$V_{C C}=4.5 \mathrm{~V}$		$\mathrm{IOL}=48 \mathrm{~mA}$		0.38	0.55				V
			$\mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50			50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50			-50	$\mu \mathrm{A}$
1	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$								mA
1 H	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IL	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6			-0.6	mA
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$		-100		-225	-100		-225	mA
ICCL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$							37		mA
${ }^{\text {ICCH }}$	$V_{C C}=5.5 \mathrm{~V}$							2		mA
ICCZ	$V_{C C}=5.5 \mathrm{~V}$							3.5		mA

\dagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.

timing requirements

\dagger For conditions as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.

SN54BCT374, SN74BCT374
OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS
WITH 3-STATE OUTPUTS
switching characteristics

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \text { 'BCT374 } \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R1}=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \end{aligned}$ T_{A} MIN to MAX ${ }^{\dagger}$				UNIT
						SN54	T374	SN74	T374	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$:		125							MHz
tPLH	CLK	Q		6.5						ns
tpHL	CLK	Q		6.2						ns
tpZH	$\overline{\mathrm{OC}}$	Q		6.9						ns
${ }_{\text {tPZL }}$	$\overline{\mathrm{OC}}$	Q		8						ns
tPHZ	$\overline{O C}$	Q		6.7						ns
tpLZ	OC	Q		4.3						ns

\dagger For conditions as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.

SWITCH POSITION TABLE

TEST	S1
tplH	Open
tPHL	Open
${ }^{\text {tPZH }}$	Open
tPZL	Closed
${ }_{\text {t }}^{\text {PHZ }}$	Open
$t_{\text {PLL }}$	Closed

LOAD CIRCUIT

Voltage waverorms
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS
enable and disable times, three-state outputs

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

- State of the Art BiCMOS Design Significantly Reduces ICCZ
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Data Flow-Through Pinout (All Inputs on Opposite Side from Outputs)
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic $\mathbf{3 0 0}$-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed to have the performance of the popular SN54BCT240/SN74BCT240 series and, at the same time, offer a pinout with inputs and outputs on opposite sides of the package. This arrangement greatly enhances printed circuit board layout.

The three-state control gate is a 2 -input NOR gate so that if either $\overline{\mathrm{G}} 1$ or $\overline{\mathrm{G}} 2$ is high, all eight outputs are in the high-impedance state.

The SN548CT540 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT540 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT540 . . . J PACKAGE
SN74BCT540 . . DW OR N PACKAGE
(TOP VIEW)

SN54BCT540 . . FK PACKAGE (TOP VIEW)

FUNCTION TABLE

INPUTS			OUTPUT
G1	$\overline{\text { G2 }}$	A	Y
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

$Z=$ High Impedance

SN54BCT540, SN74BCT540
 OCTAL BUFFERS AND LINE DRIVERS
 WITH 3-STATE OUTPUTS

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\ddagger}$

\ddagger Stresses beyond those listed under "'absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

SN54BCT540, SN74BCT540 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54BCT540			SN74BCT540			UNIT
			MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
$V_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		$\mathrm{I}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
$\mathrm{VOL}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}^{\mathrm{OL}}=48 \mathrm{~mA}$		0.38	0.55				V
		$1 \mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
IOZH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=2.7 \mathrm{~V}$				50			50	$\mu \mathrm{A}$
lozL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$				-50			-50	$\mu \mathrm{A}$
1	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
1 l .	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$				-0.6			-0.6	mA
los ${ }^{\text {§ }}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$		-100		-225	-100		-225	mA
ICCL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$			45	71		45	71	mA
ICCH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$			20	30		20	30	mA
ICCZ	$V_{C C}=5.5 \mathrm{~V}$			3	6		3	6	mA
C_{i}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			5			5		pF
C_{0}	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			10			10.		pF

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\S}$ Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.
switching characteristics

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} V_{C C}=5 \mathrm{~V}, \\ C_{L}=50 \mathrm{pF}, \\ R 1=500 \Omega, \\ R 2=500 \Omega, \\ T_{A}=25^{\circ} \mathrm{C} \\ \hline \text { BCT540 } \\ \hline \end{gathered}$			$\begin{aligned} V_{C C} & =4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ C_{L} & =50 \mathrm{pF}, \\ R 1 & =500 \Omega \\ R 2 & =500 \Omega \\ T_{A} & =\text { MIN to MAX }{ }^{\dagger} \end{aligned}$				UNIT
						SN54BCT540		SN74BCT540		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	2.5	4.1	5.8	1.9	7.2	2	6.9	ns
tPHL	A	Y	0.6	1.9	3.5	0.3	4.5	0.3	4	ns
tPZH	$\overline{\text { G }}$	Y	4.8	6.8	8.9	4.1	10.4	4.1	10.1	ns
tPZL	$\overline{\mathrm{G}}$	Y	6	8	10	5.3	11.8	5.3	11.3	ns
tPHZ	G	Y	3.5	5.7	7.8	2.7	9.4	2.7	9	ns
tPLZ	G	Y	3.8	5.5	7.4	3.5	8.9	3.5	8.5	ns

${ }^{\dagger}$ For conditions specified as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: $A . C_{L}$ includes probe and jig capacitance,
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, Z_{o}=50 \Omega, t_{r} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

- State of the Art BiCMOS Design Significantly Reduces ICCZ
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Data Flow-Through Pinout (All Inputs on Opposite Side from Outputs)
- Package Options Include Plastic "Small Outline'" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed to have the performance of the popular SN54BCT240/SN74BCT240 series and, at the same time, offer a pinout with inputs and outputs on opposite sides of the package. This arrangement greatly enhances printed circuit board layout.

The three-state control gate is a 2 -input NOR gate so that if either $\overline{\mathrm{G}} 1$ or $\overline{\mathrm{G}} 2$ is high, all eight outputs are in the high-impedance state.
The SN54BCT541 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT541 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT541 . . J J PACKAGE
SN74BCT541 . . . DW OR N PACKAGE
(TOP VIEW)

SN54BCT541 . . FK PACKAGE (TOP VIEW)

function table

INPUTS		OUTPUT	
$\mathbf{G} 1$	$\overline{\mathbf{G}} 2$	A	Y
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

$Z=$ High Impedance
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\ddagger}$

\#Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54BCT541		SN74BCT541		UNIT
		MIN	NOM	MAX	MIN	

SN54BCT541, SN74BCT541 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		SN54BCT541			SN74BCT541			UNIT
			MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		${ }^{1} \mathrm{OH}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$		0.38	0.55				V
		$1 \mathrm{OL}=64 \mathrm{~mA}$					0.42	0.55	
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50			50	$\mu \mathrm{A}$
IozL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50			-50	$\mu \mathrm{A}$
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$				0.1			0.1	mA
IIH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}=0.5 \mathrm{~V}$				-0.6			-0.6	mA
los ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$		-100		-225	-100		-225	mA
ICCL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$			47	72		47	72	mA
ICCH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$			27	40		27	40	mA
ICCZ	$V_{\text {CC }}=5.5 \mathrm{~V}$			5	7		5	7	mA
C_{i}	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			5			5		pF
C_{0}	$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			10			10		

switching characteristics

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R} 1=500 \Omega \\ \mathrm{R} 2=500 \Omega \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \text { 'BCT541 } \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & \mathrm{r}_{A}=\text { MIN to } \mathrm{MAX} \end{aligned}$				UNIT
						SN54BCT541		SN74BCT541		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	2.1	3.7	5.3	1.7	6.3	1.7	6	ns
tPHL	A	Y	3.7	5.5	7.5	3.2	8.7	3.4	8.2	ns
tPZH	$\overline{\mathrm{G}}$	Y	5.3	7.2	9.3	4.4	11	4.6	10.7	ns
tPZL	$\overline{\mathrm{G}}$	Y	6	8	10.4	5.4	12.4	5.4	11.5	ns
tpHz	$\overline{\mathrm{G}}$	Y	3.5	5.6	7.6	3	9.1	3	8.6	ns
tPLZ	$\overline{\mathrm{G}}$	Y	3.4	5.2	7.2	3	9.4	3	8.6	ns

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\S}$ Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
${ }^{\text {tPLH }}$	Open
tPHL	Open
tPZH	Open
${ }^{\text {t P Z L }}$	Closed
tPHZ	Open
${ }^{\text {tPLZ }}$	Closed

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

- State of the Art BiCMOS Design Reduces ICCZ by Approximately 90\%
- Functionally Equivalent to 54F620 and 74F620
- ESD Protection Exceeds 2000 V per MIL-STD-833C Method 3015
- Package Options Include Plastic "'Small Outline'' Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal bus transceivers are designed for asynchronous two-way communications between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\bar{G} B A$ and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated. The dual-enable configuration gives the octal bus transceivers the capability to store data by simultaneous activation of $\bar{G} B A$ and $G A B$. Each output reinforces its input in this transceiver configuration. When both enable inputs are activated and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states.

The SN54BCT620 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT620 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT620 . . . J PACKAGE
SN74BCT620... DW OR N PACKAGE
(TOP VIEW)

FUNCTION TABLE

ENABLE INPUTS		OPERATION
$\overline{G B A}$	GAB	BCT620
L	L	$\overline{\mathrm{B}}$ data to A bus
H	H	$\overline{\mathrm{A}}$ data to B bus
H	L	Isolation
L	H	$\overline{\mathrm{B}}$ data to A bus
L	H	$\overline{\mathrm{A}}$ data to B bus

logic symbol ${ }^{\dagger}$

logic diagram (positive logic)

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\boldsymbol{\dagger}}$

Supply voltage, VCC		
Input voltage (I/O ports) . - 0.5 V to 5.5 V		
Input voltage (excluding I/O ports) . - 0.5 V to 7 V		
Voltage applied to any output in the disabled or power-off state - 0.5 V to 5.5 V		
Voltage applied to any output in the high state . - 0.5 V to VCC		
Operating free-air temperature range:	SN54BCT620	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	SN74BCT620	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

			SN54BCT620			SN74BCT620			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
IK	Input clamp current				-18			-18	mA
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	Any A			-3			-3	mA
		Any B			-12			-15	mA
${ }^{\text {IOL }}$	Low-level output current	Any A			20			24	mA
		Any B			48			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54BCT620			SN74BCT620			UNIT		
		MIN	TYP ${ }^{\text {t }}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2			-1.2	V
VOH	Any A	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$	2.5	3.4		2.5	3.4		V		
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
	Any B	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
			$\mathrm{IOH}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					V		
			$\mathrm{IOH}^{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		V		
$\mathrm{V}_{\text {OL }}$	Any A	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=20 \mathrm{~mA}$		0.3	0.5				V		
			$\mathrm{IOL}^{\prime}=24 \mathrm{~mA}$					0.35	0.5	V		
	Any B	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=48 \mathrm{~mA}$		0.38	0.55				V		
			$\mathrm{I}^{\mathrm{OL}}=64 \mathrm{~mA}$					0.42	0.55	V		
I	A and B	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0			1.0	mA		
	GAB or $\overline{\mathrm{G}} \mathrm{BA}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA		
IIH^{\ddagger}	A and B	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			70			70	$\mu \mathrm{A}$		
	GAB or $\overline{\mathrm{G}} \mathrm{BA}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL ${ }^{ \pm}$	A and B	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.65			-0.65	mA		
	GAB or $\overline{\mathrm{G}} \mathrm{BA}$	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{v}_{1}=0.5 \mathrm{~V}$			-0.60			-0.60	mA		
$\mathrm{los}^{\text {§ }}$	Any A	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0$	-60		-150	-60		-150	mA		
	Any B		$\mathrm{V}_{\mathrm{O}}=0$	-100		-225	-100		-225	mA		
${ }^{\text {ICCH }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	See Note 1		23	37		23	37	mA		
${ }^{\text {I CCL }}$		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	See Note 1		53	84		53	84	mA		
ICCz		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			4	10		4	10	mA		

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ For I / O ports, the parameters $I_{I H}$ and $I_{I L}$ include the off-state output current.
${ }^{\S}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 1: $\mathrm{I}_{\mathrm{CCH}}$ and $\mathrm{I}_{\mathrm{CCL}}$ are measured in the A to B mode.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R1}=500 \Omega, \\ & \mathrm{R} 2=500 \mathrm{\Omega}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to } \text { MAX }^{\dagger} \end{aligned}$				UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	B	1	3.4	4.8	1	6.2	1	5.4	ns
tPHL			0.3	1.9	3.3	0.3	3.7	0.3	3.5	
tPLH	B	A	1.2	4.1	5.7	1.2	7.5	1.2	6.7	ns
tPHL			0.3	2	3.5	0.3	3.8	0.3	3.7	
tPZH	$\overline{\mathrm{G}} \mathrm{BA}$	A	1.7	7.2	9	1.7	11.2	1.7	10.4	ns
tPZL			2.7	7.6	9.4	2.7	11.4	2.7	10.8	
tPHZ	$\overline{\mathrm{G}} \mathrm{BA}$	A	1.2	5.3	7.2	1.2	8.7	1.2	8	ns
tPLZ			1	4.4	5.9	1	8	1	6.6	
tPZH	GAB	B	2.5	5.3	6.7	2.5	7.6	2.5	7.3	ns
tPZL			3.2	6.1	7.6	3.2	8.7	3.2	8.4	
tPHZ	GAB	B	1.7	5.2	6.8	1.7	8.4	1.7	7.8	ns
tplz			1	3.7	5.7	1	6.8	1	6.3	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS propagation delay times

SWITCH POSITION TABLE

TEST	S1
${ }^{\text {tplH }}$	Open
tPHL	Open
tpz	Open
tPZL	Closed
${ }^{\text {tPHZ }}$	Open
tpLz	Closed

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

2

- State-of-the-Art BiCMOS Design Reduces lCCZ by Approximately 90\%
- Functionally Equivalent to SN54F623 and SN74F623
- ESD Protection Exceeds 2000 V per MIL-STD-833C Method 3015
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal bus transceivers are designed for asynchronous two-way communications between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\bar{G} B A$ and $G A B$).

The enable inputs can be used to disable the device so that the buses are effectively isolated. The dual-enable configuration gives the octal bus transceivers the capability to store data by simultaneous activation of GBA and GAB. Each output reinforces its input in this transceiver configuration. When both enable inputs are activated and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states.

The SN54BCT623 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT623 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

ENABLE INPUTS		OPERATION
GBA	GAB	
L	L	B data to A bus
H	H	A data to B bus
H	L	Isolation
L	H	B data to A bus
L	H	A data to B bus

SN54BCT623 . . . J PACKAGE
SN74BCT623 . . DW OR N PACKAGE
(TOP VIEW)

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

			SN54BCT623			SN74BCT623			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
IIK	Input clamp current				-18			-18	mA
${ }^{1} \mathrm{OH}$	High-level output current	Any A			-3			-3	mA
		Any B			-12			-15	mA
${ }^{\text {I OL }}$	Low-level output current	Any A			20			24	mA
		Any B			48			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54BCT623			SN74BCT623			UNIT		
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX					
VIK				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2			-1.2	V
V_{OH}	Any A	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4		2.5	3.4		V		
			$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
	Any B	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
			$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					V		
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		V		
VOL	Any A	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.5				V		
			$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5	V		
	Any B	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}^{2}=48 \mathrm{~mA}$		0.38	0.55				V		
			$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$					0.42	0.55	V		
1	A and B	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0			1.0	mA		
	GAB or $\overline{\mathrm{G}} \mathrm{BA}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA		
IH^{\ddagger}	A and B	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			70			70	$\mu \mathrm{A}$		
	GAB or $\overline{\mathrm{G}} \mathrm{BA}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$.	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IL ${ }^{\ddagger}$	A and B	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.65			-0.65	mA		
	GAB or $\overline{\mathrm{G}} \mathrm{BA}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.60			-0.60	mA		
los ${ }^{5}$	Any A	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, }$	$\mathrm{V}_{0}=0$	-60		-150	-60		-150	mA		
	Any B	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-100		-225	-100		-225	mA		
${ }^{\text {ICCH }}$			See Note 1		23			23		mA		
${ }^{\text {ICCL }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	See Note 1		53			53		mA		
I CCZ		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$			4			4		mA		

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
${ }^{\S}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 1: $\mathrm{I}_{\mathrm{CCH}}$ and ICCL^{2} are measured in the A-to-B mode.

2

switching characteristics（see Figure 1）

PARAMETER	FROM （INPUT）	то （OUTPUT）	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \text { BCT623 } \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX }{ }^{\dagger} \\ & \hline \end{aligned}$				UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	B		3.5						ns
tPHL				2						
tPLH	B	A		4						ns
tPHL				2						
tPZH	$\overline{\text { G］BA }}$	A		7						ns
tPZL				7.5						
tPHZ	$\overline{\mathrm{G}} \mathrm{BA}$	A		5.5						ns
tPLZ				4.5						
tPZH	GAB	B		5.5						ns
tPZL				6						
tPHZ	GAB	B		5						ns
tPLZ				4						

${ }^{\dagger}$ For conditions shown as MIN or MAX，use the appropriate value specified under recommended operating conditions．

SN54BCT623, SN74BCT623 OCTAL BUS TRANSCEIVERS

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

LOAD CIRCUIT

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

- BiCMOS Process with TTL Inputs and Outputs
- BiCMOS Design Substantially Reduces Standby Current
- Outputs Have Undershoot Protection Circuitry
- Power-Up High-Impedance State
- Buffered Control Inputs to Reduce DC Loading Effects
- Package Options Include Plastic "Small Outline'" Packages, Plastic Chip Carriers, and Standard Plastic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (\bar{G} can be used to disable the device so the buses are effectively isolated.
The SN54BCT640 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN54BCT640 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT640 . . J PACKAGE
SN74BCT640 . . . DW OR N PACKAGE
(TOP VIEW)

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (uniess otherwise noted) \ddagger

'Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated condtions for extended periods may affect device reliability.
recommended operating conditions

			SN54BCT640			SN74BCT640			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$V_{\text {cc }}$	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
IIK	Input clamp current				18			-18	mA
	figh-level output current	A0-A7			-3			-3	mA
Ioh	Hign-level output current	B0-B7			-12			-15	
IOL	Low-level output current	A0-A7			20			24	mA
		B0-B7			48			64	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

SN54BCT640, SN74BCT640 OCTAL BUS TRANSCEIVERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54BCT640			SN74BCT640			UNIT		
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
$\mathrm{VOH}^{\text {O }}$	Any A	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$	2.5		3.4		2.5	3.4		V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
	Any B	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V		
			$\mathrm{IOH}^{\text {O }}=-12 \mathrm{~mA}$	2	3.2					V		
			$\mathrm{IOH}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		V		
V_{OL}	Any A	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOL}=20 \mathrm{~mA}$		0.3	0.5				V		
			$\mathrm{IOL}^{2}=24 \mathrm{~mA}$					0.35	0.5	V		
	Any 8	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.38	0.55				V		
			$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$					0.42	0.55	V		
4	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0			1.0	mA		
	A or B ports	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA		
$\mathbb{1 H}^{\ddagger}$	Control inputs	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			70			70	$\mu \mathrm{A}$		
	A or B ports	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
$1 L^{\ddagger}$	Control inputs	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.65			-0.65	mA		
	A or B ports	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.60			-0.60	mA		
$\mathrm{los}^{\text {§ }}$	Any A	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-60		-150	-60		-150	mA		
	Any B	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-100		-225	-100		-225	mA		
${ }^{\text {ICCH }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	See Note 1		23			23		mA		
${ }^{\text {I CCL }}$		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	See Note 1		53			53		mA		
ICCz		$V_{C C}=5.5 \mathrm{~V}$			4			4		mA		

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ For I/O ports, the parameters $I_{I H}$ and I_{IL} include the off-state output current.
\S Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. NOTE 1: ICCH and ICCL are measured in the A to B mode.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline{ }^{\prime} \text { BCT640 } \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\operatorname{MIN} \text { to } \operatorname{MAXI} \\ & \hline \end{aligned}$				UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	A or B	B or A		4.1						ns
tpHL				2.1						
tPZH	$\overline{\mathrm{G}}$	A or B		6.5						ns
tPZL				7.5						
tPHZ.	$\overline{\mathrm{G}}$	A or B		5.7						ns
tPLZ				5.4						

IFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH $^{\text {tPL }}$	Open
tPHL $^{\text {tPZH }}$	Open
${ }^{\text {tPZ }}$	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

SN54BCT2240, SN74BCT2240 OCTAL BUFFERS AND LINE DRIVERS/MOS DRIVERS WITH 3-STATE OUTPUTS

D3057, SEPTEMBER 1988

- BiCMOS Design Substantially Reduces Standby Current
- Output Ports have 25- Ω Series Resistors so No External Resistors are Required
- ESD Protection Exceeds 2000 V
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Package Options Include Plastic "'Small Outline' Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'BCT2241 and 'BCT2244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical \bar{G} (active-low output control) inputs, and complementary G and $\overline{\mathrm{G}}$ inputs. These devices feature high fan-out and improved fan-in.

The SN54BCT2240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT2240 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT2240 . . . FK PACKAGE (TOP VIEW)

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

${ }^{\dagger}$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

		SN54BCT2240			SN74BCT2240			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
${ }^{1} \mathrm{OH}$	High-level output current			-12			-15	mA
IOL	Low-level output current			48			64	mA
TA	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT2240			SN74BCT2240			UNIT
			MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-18 \mathrm{~mA}$			-1.2			-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=-48 \mathrm{~mA}$		0.38	0.55				V
		$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
IIH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1			-1	mA
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-100		-225	-100		-225	mA
$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Outputs open	19			19			mA
${ }^{\text {I CCL }}$			46			46			
ICCz			6			6			

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline{ }^{\prime} \mathrm{BCT} 2240 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & R 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \\ & \hline \end{aligned}$				UNIT
							240		240	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y		3.5						ns
tPHL				3.3						
tPZH	$\overline{\mathrm{G}}$	Y		6.7						ns
tPZL				9						
tPHZ	$\overline{\mathrm{G}}$	Y		5.4						ns
tPLZ				7.7						

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

- BiCMOS Design Substantially Reduces Standby Current
- Output Ports have 25- Ω Series Resistors so No External Resistors are Required
- ESD Protection Exceeds 2000 V
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'BCT2240 and 'BCT2244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathrm{G}}$ (active-low output control) inputs, and complementary G and $\overline{\mathrm{G}}$ inputs. These devices feature high fan-out and improved fan-in.

The SN54BCT2241 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT2241 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54BCT2241 . . . J PACKAGE
SN74BCT2241 . . . DW OR N PACKAGE (TOP VIEW)
$1 \bar{G} \square 1$ $1 \mathrm{~A} 1 \square 20 \square \mathrm{VCC}_{\mathrm{C}}$ $2 \mathrm{Y} 4 \square 3$

SN54BCT2241 . . FK PACKAGE (TOP VIEW)

logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

${ }^{\dagger}$ 'Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

			4BCT2			4BCT2		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
$V_{\text {CC }}$	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
${ }^{\mathrm{O}} \mathrm{H}$	High-level output current			-12			-15	mA
${ }^{\mathrm{O}} \mathrm{T}$	Low-level output current			48			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

SN54BCT2241, SN74BCT2241 OCTAL BUFFERS AND LINE DRIVERS/MOS DRIVERS WITH 3-STATE OUTPUTS
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT2241			SN74BCT2241			UNIT
			MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\text {O }}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}^{\text {O }}=-48 \mathrm{~mA}$		0.38	0.55				V
		$\mathrm{IOL}^{\text {a }}$ = 64 mA					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
$1 / 1$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1			-1	mA
lozh	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
lozl	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-100		-225	-100		-225	mA
${ }^{\mathrm{ICCH}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Outputs open	19			19			mA
${ }^{\text {ICCL }}$			46			46			
ICCz			6			6			

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R1}=500 \Omega, \\ & \mathrm{R}^{2}=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline{ }^{\prime} \mathrm{BCT} 2241 \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\operatorname{MIN} \text { to } \mathrm{MAX} \\ & \hline \end{aligned}$				UNIT
							241		241	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y		3.3						ns
tPHL				1.8						
tPZH	G or $\overline{\mathrm{G}}$	Y		6.4						ns
tPZL				7.5						
tPHZ	G or $\overline{\mathrm{G}}$	Y		6						ns
tPLZ				6.7						

SWITCH POSITION TABLE

TEST	S1
tPLH $^{\text {tPHL }}$	Open
tPH	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
$t_{\text {PLLZ }}$	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES，THREE－STATE OUTPUTS

NOTES：A．C_{L} includes probe and jig capacitance．
B．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control． Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control．
C．All input pulses are supplied by the generators having the following characteristics： $\operatorname{PRR} \leq 10 \mathrm{MHz}, Z_{0}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$ ， $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．

FIGURE 1．SWITCHING CHARACTERISTICS

- BiCMOS Design Substantially Reduces Standby Current
- Output Ports have 25- Ω Series Resistors so No External Resistors are Required
- ESD Protection Exceeds 2000 V
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Package Options Include Plastic "Small Outline' Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'BCT2240 and 'BCT2241, these devices provide the choice of selected combinations of inverting outputs, symmetrical \bar{G} (active-low input control) inputs, and complementary G and \bar{G} inputs. Theses devices feature high fan-out and improved fan-in.

The SN54BCT2244 is characaterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74BCT2244 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

```
    SN54BCT2244 . . . J PACKAGE
SN74BCT2244 . . . DW OR N PACKAGE
            (TOP VIEW)
```

	\bigcirc_{20}	V_{CC}
1A1 ${ }^{2}$	19	$2 \overline{\mathrm{G}}$
2 Y 4	18	1 Y 1
1A2 \square^{4}	17	2A4
$2 \mathrm{Y} 3{ }^{5}$	16	1 Y 2
1A3 -6	15	2 A 3
$2 Y 2$	14	1 Y 3
1A4	13	2A2
2 Y 1	12	1 Y 4
GND 10	11	2 A 1

SN54BCT2244 . . FK PACKAGE
(TOP VIEW)

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

${ }^{\dagger}$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions' is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54BCT2244, SN74BCT2244 OCTAL BUFFERS AND LINE DRIVERS/MOS DRIVERS WITH 3-STATE OUTPUTS
recommended operating conditions

		SN54BCT2244			SN74BCT2244			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
IOH	High-level output current			-12			-15	mA
IOL	Low-level output current			48			64	mA
TA	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54BCT2244			SN74BCT2244			UNIT
			MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
$V_{\text {IK }}$	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2			-1.2	V
V_{OH}	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2	3.2					
		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$				2	3.1		
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.38	0.55				V
		$\mathrm{IOL}^{\prime}=64 \mathrm{~mA}$					0.42	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=5.5 \mathrm{~V}$				0.1			0.1	mA
1 IH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=0.5 \mathrm{~V}$				-1			-1	mA
IOZH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-100		-225	-100		-225	mA
ICCH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Outputs open	23			23			
${ }^{1} \mathrm{CCL}$			53			53			
ICCZ			4			4			

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics (see Figure 1)

PARAMETER	FROM (INTPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \text { 'BCT2244 } \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R2}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \\ & \hline \end{aligned}$				UNIT
							244			
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y		3						ns
tPHL				4.1						
tPZH	$\overline{\mathrm{G}}$	Y		7						ns
tPZL				8.2						
tPHZ	$\overline{\mathrm{G}}$	Y		6.2						ns
tPLZ				8.4						

SN54BCT2244，SN74BCT2244
 OCTAL BUFFERS AND LINE DRIVERS／MOS DRIVERS
 WITH 3－STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES，THREE－STATE OUTPUTS
NOTES：A．C_{L} includes probe and jig capacitance．
B．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control． Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control．
C．All input pulses are supplied by the generators having the following characteristics：$P R R \leq 10 \mathrm{MHz}, Z_{o}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$ ， $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．

FIGURE 1．SWITCHING CHARACTERISTICS

SN74BCT2827A, SN74BCT2828A 10-BIT BUS/MOS MEMORY DRIVERS WITH 3.STATE OUTPUTS

- BiCMOS Design Substantially Reduces Standby Current
- 25- Ω Series Resistors at Outputs Significantly Reduce Overshoot and Undershoot
- Specifically Designed to Drive MOS DRAMs
- 3-State Outputs
- Data Flow-Thru Pinout (All Inputs on Opposite Side from Outputs)
- Power-Up High-Impedance State
- Package Options Include Plastic "Small Outline'' Packages, Plastic Chip Carriers, and Standard Plastic DIPs

description

These 10-bit buffers and bus drivers are specifically designed to drive the capacitive input characteristics of MOS DRAMs. They provide high-performance bus interface for wide data paths or buses carrying parity.
The three-state control gate is a 2 -input positive NOR gate so if either $\overline{\mathrm{G}} 1$ or $\overline{\mathrm{G}} 2$ is high, all 10 outputs are in the high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down.
The SN74BCT2827A provides true data and the SN74BCT2828A provides inverted data at the outputs.

These devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

DW OR NT PACKAGE
(TOP VIEW)

FN PACKAGE
(TOP VIEW)

NC-No internal connection
logic symbols ${ }^{\dagger}$

${ }^{\dagger}$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagrams (positive logic)

SN74BCT2828A

Pin numbers shown are for DW and NT packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

		MIN	NOM	MAX	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{IOH}^{\text {l }}$	High-level output current			-1	mA
${ }_{\mathrm{I}}^{\mathrm{OL}}$	Low-level output current			12	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
V_{OL}	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$.	$1 \mathrm{OL}=1 \mathrm{~mA}$		0.15	0.5	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$		0.35	0.8	
${ }^{1} \mathrm{OZH}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
${ }^{1} \mathrm{OL}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	50			mA
${ }^{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	-35			mA
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
1 IH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.2	mA
10^{\ddagger}	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-30		-112	mA
${ }^{\text {I CCL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Outputs open		28	40	A
ICCZ	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	Outputs open		4.5	8	

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & R 2=500 \Omega, \\ & \mathrm{~T}_{A}=\text { MIN to MAX } \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A	Y		4	6	2	7	ns
tPHL				6	8	2	9	
tPZH	$\overline{\mathrm{G}}$	Y		8	10	4	13	ns
tPZL				11	14	6	17	
tphz	$\overline{\mathrm{G}}$	Y		8	12	4	15	ns
tPLZ				7	11	3	13	

SN74BCT2828A
 10-BIT BUFFERS BUSIMOS MEMORY DRIVERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
\qquad
Supply voltage, VCC
7 V
Input voltage
Voltage applied to a disabled 3 -state output . 5.5 V
Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
recommended operating conditions

	MIN	NOM	MAX
$V_{C C}$	Uupply voltage	4.5	5
$\mathrm{~V}_{\text {IH }}$	High-level input voltage	5.5	V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	2	
$\mathrm{IOH}_{\mathrm{OH}}$	High-level output current		V
$\mathrm{IOL}^{\text {Low-level output current }}$	0.8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-1	mA

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
VOH	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V ,	$1 \mathrm{OH}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{l}^{\mathrm{OL}}=1 \mathrm{~mA}$		0.15	0.5	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$		0.35	0.8	
IOZH	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
1 OL	$V_{C C}=4.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2 \mathrm{~V}$	50			mA
IOH	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	-35			mA
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IL	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.2	mA
10^{\ddagger}	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{0}=2.25 \mathrm{~V}$	-30		-112	mA
${ }^{\text {CCCL }}$	$V_{C C}=5.5 \mathrm{~V}$,	Outputs open		28	40	A
ICCZ	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Outputs open		3.5	6	

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger}$ The output conditions have been chosen to produce a curent that closely approximates one half of the true short-circuit output current, los.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R_{2}=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C}, \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX } \\ & \hline \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH.	A	Y		5	7	2	8	ns
tpHL				5	7	2	8	
tPZH	$\overline{\mathrm{G}}$	Y		8	11	4	12	ns
tPZL				10	14	6	16	
tPHZ	$\overline{\mathrm{G}}$	Y		10	14	4	16	ns
tplz				8	12	3	14	

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
$t_{\text {PLH }}$	Open
t PHL $^{\text {tPZH }}$	Open
tPZL	Open
tPHZ	Open
tpLZ	Closed

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal condition such that the output is high except when disabled by the output control.
C. All input pulses are supplied by the generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

SN74BCT29827A, SN74BCT29828A 10-BIT BUFFERS AND BUS DRIVERS WITH 3-STATE OUTPUTS

- BiCMOS Design Substantially Reduces Standby Current
- Functionally Equivalent to AM29827, AM29828, SN74ALS29827, and SN74ALS29828
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce DC Loading
- Data Flow-Thru Pinout (All Inputs on Opposite Side from Outputs)
- Power-Up High-Impedance State
- Package Options Include Plastic Chip Carriers, in Addition to Plastic and Ceramic DIPs
- BiCMOS Process with TTL Inputs and Outputs
- Dependable Texas Instruments Quality and Reliability

description

These 10 -bit buffers and bus drivers provide high-performance bus interface for wide data paths or buses carrying parity.

The 3 -state control gate is a 2 -input positive NOR gate so if either $\overline{\mathrm{G}} 1$ or $\overline{\mathrm{G}} 2$ is high, all 10 outputs are in the high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down.

The SN74BCT29827A provides true data and the SN74BCT29828A provides inverted data at the outputs.

The SN74BCT29827A and SN74BCT29828A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

DW OR NT PACKAGE
(TOP VIEW)

fN PACKAGE
(TOP VIEW)

NC-No internal connection

SN74BCT29827A, SN74BCT29828A
 10-BIT BUFFERS AND BUS DRIVERS WITH 3-STATE OUTPUTS

logic symbols ${ }^{\dagger}$

SN74BCT29827A

SN74BCT29828A

${ }^{\dagger}$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagrams (positive logic)

Pin numbers shown are for DW and NT packages.

SN74BCT29827A
 10-BIT BUFFERS AND BUS DRIVERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC . 7 V
Input voltage (all inputs and I/O ports) . 5.5 V
Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
recommended operating conditions

		MIN	NOM
V_{CC}	Mupply voltage	4.5	5
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	5.5	V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	2	
I_{OH}	High-level output current	V	
$\mathrm{IOL}_{\mathrm{OL}}$	Low-level output current	V	
T_{A}	Operating free-air temperature	-24	mA

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP ${ }^{\ddagger}$	MAX	UNIT
$V_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	1			-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$1 \mathrm{OH}=-15 \mathrm{~mA}$	2.4			V
		$1 \mathrm{OH}=-24 \mathrm{~mA}$	2			
VOL	$\mathrm{V}_{\text {CC }}=$ MIN,	$1 \mathrm{OL}=48 \mathrm{~mA}$		0.35	0.5	V
Iozh	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IOZL	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
1	$V_{C C}=$ MAX ,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA
1 IH	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.2	mA
$\mathrm{IOS}^{\text {¢ }}$	$V_{C C}=M A X$,	$\mathrm{V}_{0}=0$	-75		-250	mA
ICCL	$V_{C C}=M A X$,	Outputs open		28	40	mA
ICCZ	$V_{C C}=M A X$,	Outputs open		3.5	6	mA

\dagger^{\dagger} For conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

switching characteristics

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX } \\ & \hline \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	A	Y		3.5	6	1	7	ns
tPHL				5	7	2	9	
tPZH	\bar{G}	Y		7	10	2	12	ns
tPZL				10	13	4	15	
tphz	$\overline{\mathrm{G}}$	Y		7	10	2	12	ns
tPLZ				7	10	2	12	

SN74BCT29828A 10-BIT BUFFERS AND BUS DRIVERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage; VCC 7 V
Input voltage (all inputs and I/O ports) 5.5 V
Operating free-air temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

recommended operating conditions

	MIN	NOM	MAX
$V_{C C}$	UNIT		
$V_{\text {IH }}$	High-level input voltage	4.5	5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	5.5	V
$\mathrm{IOH}_{\mathrm{OH}}$	High-level output current		
I_{OL}	Low-level output current		V
T_{A}	Operating free-air temperature	0.8	V

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{l}_{1}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			V
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2			
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{lOL}=48 \mathrm{~mA}$		0.35	0.5	V
lozh	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
lozL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
1	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA
1 IH	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.2	mA
los ${ }^{\text {§ }}$	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{O}}=0$	-75		-250	mA
ICCL	$\mathrm{V}_{C C}=\mathrm{MAX}$,	Outputs open		28	40	mA
ICCZ	$V_{C C}=M A X$,	Outputs open		3.5	6.5	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

switching characteristics

PARAMETER	FROM (INPUT)	T0 (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & R 2=500 \Omega, \\ & \mathrm{~T}_{A}=\operatorname{MIN} \text { to MAX } \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A	Y		3.5	6	1	7	ns
tPHL				3.5	6	1	7	
tPZH	$\overline{\mathrm{G}}$	Y		7	9	2	11	ns
tPZL				9	13	4	15	
tPHZ	$\overline{\mathrm{G}}$	Y		6	9	2	10	ns
tPLZ				6	10	2	11	

SN74BCT29827A, SN74BCT29828A 10-BIT BUFFERS AND BUS DRIVERS WITH 3-STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS PULSE DURATIONS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

- BiCMOS Process with TTL Inputs and Outputs
- BiCMOS Design Reduces Standby Current
- Flow-Through Pinout (All Inputs on Opposite Side from Outputs)
- Functionally Equivalent to AMD AM29833, AM29834, 'ALS29833, and 'ALS29834
- High-Speed Bus Transceivers with Parity Generator/Checker
- Parity Error Flag with Open-Collector Output
- Has a Register for Storage of the Parity Error Flag
- Choice of True ('BCT29833) or Inverting ('ВСТ29834) Logic
- Package Options Include Plastic "'Small Outline" Package, Plastic Chip Carriers, and Standard Plastic 300-mil Dips

description

The SN74BCT29833 and SN74BCT29834 are 8 -bit to 9 -bit parity transceivers designed for two-way communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the ERR output will indicate whether or not an error in the B data has occurred. The output enable inputs $\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$ can be used to disable the device so that the buses are effectively isolated.

A 9-bit parity generator/checker generates a parity-odd output (PARITY) and monitors the parity of the I/O ports with an open-collector parity error flag ($\overline{E R R}$). $\overline{E R R}$ is clocked into the register on the rising edge of the CLK input. The error flag register is cleared with a low pulse on the $\overline{C L R}$ input. When both $\overline{O E A}$ and $\overline{O E B}$ are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

The SN74BCT29833 and SN74BCT29834 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN74BCT' . . . DW OR NT PACKAGE (TOP VIEW)

SN74BCT' . . . FN PACKAGE (TOP VIEW)

NC-No internal connection
logic diagram (positive logic)

FUNCTION TABLE

INPUTS						OUTPUT \& I/O				FUNCTION
$\overline{\mathrm{OEB}}$	OEA	$\overline{\text { CLR }}$	CLK	$\begin{gathered} \mathrm{AI} \\ \sum \text { of } \mathrm{H}^{\prime} \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Bi}^{\dagger} \\ \sum \text { of } \mathrm{H}^{\prime} \mathrm{s} \end{gathered}$	A	B	PARITY	ERR ${ }^{\ddagger}$	
L	H	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	A Data to B Bus and Generate Parity
H	L	H	\uparrow	NA	Odd Even	B	NA	NA	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	B Data to A Bus and Check Parity
X	X	L	X	X	X	X	NA	NA	H	Clear Error Flag Register
H	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	No \uparrow No \uparrow \uparrow \uparrow	$\begin{gathered} \hline x \\ x \\ \text { Odd } \\ \text { Even } \end{gathered}$	X	z	z	z	$\begin{gathered} \mathrm{NC} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Isolation ${ }^{5}$
L	L	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	NA	A Data to B Bus and Generate Inverted Parity

[^6]logic diagram (positive logic)

FUNCTION TABLE

INPUTS						OUTPUT \& I/O				FUNCTION
$\overline{O E B}$	$\overline{\text { OEA }}$	$\overline{C L R}$	CLK	$\begin{gathered} \mathrm{Ai} \\ \sum \text { of } \mathrm{H}^{\prime} \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Bi}^{\dagger} \\ \sum \text { of } \mathrm{L} \cdot \mathrm{~s} \end{gathered}$	A	B	PARITY	$\overline{\text { ERS }}{ }^{\ddagger}$	
L	H	X	X	Odd Even	NA	NA	$\overline{\text { A }}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	NA	\bar{A} Data to B Bus and Generate Parity
H	L	H	\uparrow	NA	Odd Even	$\overline{\text { B }}$	NA	NA	$\begin{aligned} & H \\ & L \end{aligned}$	\bar{B} Data to A Bus and Check Parity
\times	X	L	X	X	X	X	NA	NA	H	Clear Error Flag Register
H	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	No \uparrow No \uparrow \uparrow \uparrow	x X X Odd Even	X	z	z	z	$\begin{gathered} \mathrm{NC} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \end{gathered}$	Isolation ${ }^{\text {§ }}$
L	L	X	X	Odd Even	NA	NA	\bar{A}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	\bar{A} Data to B Bus and Generate Inverted Parity

[^7]
error flag waveforms

ERROR FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	OUTPUT	FUNCTION
$\overline{\text { CLB }}$	CLK	POINT "P"	$\overline{E R R}_{n-1}$	$\overline{E R R}$	
H	\uparrow	H	H	H	
H	\uparrow	X	L	L	SAMPLE
H	\uparrow	L	X	L	
L	X	X	X	H	CLEAR

$\overline{\overline{E R R}_{n}}-1$ represents the state of the $\overline{\operatorname{ERR}}$ output before any changes at CLR, CLK, or point " P ".

SN74BCT29833, SN74BCT29834 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC . 7 V
Input voltage . 7 V
Voltage applied to a disabled I/O port . 5.5 V
Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
V_{OH}	High-level output voltage, ERR				2.4	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current				-24	mA
I_{OL}	Low-level output current				48	mA
t_{w}	Pulse duration	CLK high	10			ns
		CLK Iow	10			
		$\overline{C L R}$ low	10			
t_{su}	Setup time before CLK \uparrow	Bi and PARITY	12			ns
		$\overline{\mathrm{CLR}}$ inactive	12			
t_{h}	Hold time, Bi and PARITY after CLK \uparrow		0			ns
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature and supply voltage range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\text { }}$	MAX	UNIT
V_{IK}		$V_{C C}=4.5 \mathrm{~V},$	$1 \mathrm{l}=-18 \mathrm{~mA}$			-1.2	V
VOH	All inputs/outputs except ERR		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}^{\mathrm{OH}}=-24 \mathrm{~mA}$	2			
${ }^{\mathrm{IOH}}$	ERR	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
V OL		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}^{\text {OL }}=48 \mathrm{~mA}$		0.35	0.5	V
1		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA
$1 \mathrm{H}^{\ddagger}$		$V_{C C}=5.5 \mathrm{~V} \text {, }$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$1 / L^{\ddagger}$	Data	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.2	mA
	Control					-0.75	
$\mathrm{los}^{\text {¢ }}$		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{v}_{\mathrm{O}}=0$	-75		-250	mA
$\mathrm{I}_{\mathrm{CCL}}$		$V_{C C}=5.5 \mathrm{~V}$,	All Outputs Open		55	80	mA
ICCZ					30	45	

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For $1 / O$ ports, the parameters I_{IH} and I_{IL} include the off-state output current.
${ }^{\S}$ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed 1 second.

SN74BCT29833 switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tply	A or B	B or A		5	7	1	8	ns
tPHL				5	8	2	10	
tPLH	A	PARITY		7	9	2	11	ns
tPHL				10	13	5	15	
tPZH	$\overline{\text { OEA }}$ or $\overline{O E B}$	A or B		11	15	6	19	ns
tPZL				13	17	7	21	
tphz	$\overline{O E A}$ or $\overline{O E B}$	A or B		8	11	3	15	ns
tplz				10	14	4	17	
tPHL	CLK	ERR		7	10	3	12	ns
tPLH	$\overline{\text { CLR }}$	ERR		13	17	8	20	ns
tPLH	$\overline{O E A}$	PARITY		10	13	3	15	ns
tPHL				10	13	3	15	

SN74BCT29834 switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & R 2=500 \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A or B	B or A		5	7	1	8	ns
tPHL				4	6	2	7	
tPLH	A	PARITY		10	13	5	15	ns
tPHL				8	10	2	15	
tPZH	$\overline{O E A}$ or $\overline{O E B}$	A or B		11	15	6	19	ns
tPZL				15	19	7	21	
tPHZ	$\overline{O E A}$ or $\overline{O E B}$	A or B		8	11	3	15	ns
tplz				13	17	7	21	
tPHL	CLK	ERR		7	10	3	12	ns
${ }^{\text {tPLH }}$	$\overline{C L R}$	$\overline{\text { ERR }}$		13	17	8	18	ns
tPLH	$\overline{O E A}$	PARITY		10	13	3	15	ns
${ }_{\text {t }}^{\text {PHL }}$				10	13	3	15	

PARAMETER MEASUREMENT INFORMATION

switch position table

LOAD CIRCUIT 1 ALL OUTPUTS EXCEPT FOR ERROR FLAG
LOAD CIRCUIT 2 ERROR FLAG OUTPUT

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

voltage waveforms PULSE DURATIONS

Voltage waveforms
enable and disable times, 3-State outputs

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1

SN74BCT29853, SN74BCT29854 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

- BiCMOS Process with TTL Inputs and Outputs
- BiCMiOs Design Reduces Standby Current
- Flow-Through Pinout (All Inputs on Opposite Side from Outputs)
- Functionally Equivalent to AMD AM29853 and AM29854
- High-Speed Bus Transceivers with Parity Generator/Checker
- Parity Error Flag with Open-Collector Output
- Choice of True ('BCT29853) or Inverting ('BCT29854) Logic
- Has a Latch for Storage of the Parity Error Flag
- Package Options Include Plastic "Smail Outline'" Package, Plastic Chip Carriers, and Standard Plastic 300-mil Dips
- Dependabale Texas Instruments Quality and Reliability

description

The SN74BCT29853 and SN74BCT29854 are 8-bit to 9 -bit parity transceivers designed for two-way communication between data buses. When data is transmitted from the A to B bus, a parity bit is generated. When data is transmitted from the B to A bus with its corresponding parity bit, the $\overline{E R R}$ output will indicate whether or not an error in the B data has occurred. The output enable inputs $\overline{O E A}$ and $\overline{\mathrm{OEB}}$ can be used to disable the device so that the buses are effectively isolated.

A 9-bit parity generator/checker generates a parity-odd output (PARITY), and monitors the parity of the I/O ports with an open-collector parity error flag (ERR). ERR can be either passed, sampled, stored, or cleared from the latch using the $\overline{\mathrm{EN}}$ and $\overline{\mathrm{CLR}}$ control inputs. When both $\overline{\mathrm{OEA}}$ and $\overline{O E B}$ are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

The SN74BCT29853 and SN74BCT29854 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN74BCT' . . . DW OR NT PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)

FUNCTION TABLE

INPUTS						OUTPUT \& I/O				FUNCTION
$\overline{O E B}$	$\overline{\text { OEA }}$	$\overline{\text { CLR }}$	$\overline{\text { LE }}$	$\begin{gathered} \mathrm{Al} \\ \sum \text { of } \mathrm{H}^{\prime} \mathrm{s} \end{gathered}$	$\begin{gathered} \mathrm{Bi}^{\dagger} \\ \sum \text { of } \mathrm{H}^{\prime} \mathrm{s} \end{gathered}$	A	B	PARITY	$\overline{\text { ERR }}{ }^{\ddagger}$	
L	H	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	A Data to B Bus and Generate Parity
H	L	X	L	NA	Odd Even	B	NA	NA	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	B Data to A Bus and Check Parity
H	L	H	H	NA	X	\times	NA	NA	$\mathrm{N}-1$	Store Error Flag
X	X	L	H	X	X	X	NA	NA	H	Clear Error Flag Register
H	H	$\begin{gathered} \hline \mathrm{H} \\ \mathrm{~L} \\ \mathrm{X} \\ \mathrm{X} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \hline \mathrm{X} \\ \mathrm{X} \\ \mathrm{~L} \text { Odd } \\ \mathrm{H} \text { Even } \\ \hline \end{gathered}$	X	z	Z	Z	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Isolation § (Parity Check)
L	L	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	NA	A Data to B Bus and Generate Inverted Parity

[^8]
logic diagram (positive logic)

FUNCTION TABLE

INPUTS						OUTPUT \& I/O				FUNCTION
$\overline{\text { OEB }}$	$\overline{\text { OEA }}$	$\overline{\text { CLR }}$	$\overline{\text { LE }}$	$\begin{gathered} \mathrm{Ai} \\ \sum \text { of } \mathrm{H}^{\prime} \mathrm{s} \end{gathered}$	$\begin{gathered} \mathrm{Bi}^{\dagger} \\ \sum \text { of } \mathrm{L}^{\prime} \mathrm{s} \end{gathered}$	A	B	PARITY	ERR ${ }^{\text { }}$	
L	H	X	X	Odd Even	NA	NA	\bar{A}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	NA	\bar{A} Data to B Bus and Generate Parity
H	L	X	L	NA	Odd Even	$\overline{\text { B }}$	NA	NA	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	\bar{B} Data to A Bus and Check Parity
H	L	H	H	NA	X	X	NA	NA	N-1	Store Error Flag
X	X	L	H	X	X	X	NA	NA	H	Clear Error Flag Register
H	H	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{X} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \hline \mathrm{X} \\ \mathrm{X} \\ \mathrm{~L} \text { Odd } \\ \mathrm{H} \text { Even } \\ \hline \end{gathered}$	X	Z	z	Z	$\begin{gathered} \mathrm{NC} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \\ \hline \end{gathered}$	Isolation§
L	L	X	X	Odd Even	NA	NA	\bar{A}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	\bar{A} Data to B Bus and Generate Inverted Parity

[^9]\dagger Summation of low-level inputs includes PARITY along with Bi inputs.
\ddagger Output states shown assume the $\overline{E R R}$ output was previously high.
ξ In this mode the $\overline{E R R}$ output, when enabled, shows noninverted parity of the A bus.

error flag waveforms

$\overline{\mathrm{OEB}} \longrightarrow \mathrm{H}$

$\overline{O E A}$

Bi + PARITY

ERROR FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	OUTPUT	FUNCTION
$\overline{\text { LE }}$	$\overline{C L R}$	POINT 'P'	$\overline{E R R}_{n-1}{ }^{\dagger}$	ERR	
L	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	PASS
L	H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	SAMPLE
H	L	X	X	H	CLEAR
H	H	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	STORE

${ }^{\dagger}$ ERRn-1 represents the state of the ERR output before any changes at $\overline{\mathrm{CLR}}, \overline{\mathrm{LE}}$ or point P .

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, $\mathrm{V}_{\mathrm{C}} \mathrm{C}$ 7 V
Input voltage 7 V
Voltage applied to a disabled I/O port 5.5 V
Operating free-air temperature rangeStorage temperature range$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
V OH	High-level output voltage, $\overline{\text { ERR }}$				2.4	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current				-24	mA
${ }^{\mathrm{O}} \mathrm{OL}$	Low-level output current				48	mA
t_{w}	Pulse duration	$\overline{L E}$ low	10			ns
		$\overline{\text { CLR }}$ low	10			
$\mathrm{t}_{\text {su }}$	Setup time before $\overline{\text { LE }} \downarrow$	Bi and PARITY	12			ns
	Hold time, Bi and PARITY after $\overline{\mathrm{LE}} \downarrow$		3			ns
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		. 70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	All inputs/outputs except ERR		$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$1 \mathrm{OH}=-24 \mathrm{~mA}$	2			
${ }^{\mathrm{IOH}}$	ERR	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
VOL		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$		0.35	0.5	V
1		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA
$1 \mathrm{H}^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL ${ }^{\ddagger}$	Data	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.2	mA
	Control					-0.75	
IOS^{5}		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-75		-250	mA
ICCL		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	All outputs open		55	80	mA
				30	45		

[^10]SN74BCT29853 switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & \mathrm{R1}=500 \Omega \\ & \mathrm{R2}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega . \\ & T_{A}=\text { MIN to MAX } \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A or B	B or A		5	7	1	10	ns
tPHL				5	7	1	10	
tPLH	A	PARITY		10	13	2	15	ns
tPHL				10	13	5	15	
tPZH	$\overline{O E A}$ or $\overline{O E B}$	A or B		13	16	8	20	ns
tPZL				13	16	8	20	
tPHZ	$\overline{O E A}$ or $\overline{O E B}$	A or B		13	16	8	20	ns
tPLZ				13	16	8	20	
tPHL	LE	ERR		5	7	2	9	ns
tplH	$\overline{\text { CLR }}$	ERR		11	14	5	15	ns
tPLH	$\overline{O E A}$	PARITY		10	13	3	15	ns
tPHL				10	13	3	15	
tPLH	Bi/PARITY	$\overline{\text { ERR }}$		17	22	10	24	ns
tPHL.				10	13	4	16	

SN74BCT29854 switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & R_{2}=500 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega, \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX } \\ & \hline \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A or B	B or A		5	7	- 1	8	ns
tPHL				5	7	1	8	
tPLH	A	PARITY		10	13	5	15	ns
$\cdots{ }^{-}$tPHL				10	13	2	15	
tPZH	$\overline{\text { OEA }}$ or $\overline{O E B}$	A or B		12	15	4	17	ns
tpZL				13	16	8	19	
tPHZ	$\overline{O E A}$ or $\overline{O E B}$	A or B		8	11	3	15	ns
tPLZ				10	14	4	17	
tPHL	$\overline{\text { LE }}$	ERR		5	7	2	9	ns
tPLH	$\overline{\mathrm{CLR}}$	ERR		11	13	5	15	ns
tPLH	$\overline{\text { OEA }}$	PARITY		10	13	4	15	ns
tPHL				10	13	5	16	
tPLH	Bi/PARITY	$\overline{E R R}$		15	18	8	20	ns
tPHL				10	13	5	15	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT 1 ALL OUTPUTS EXCEPT FOR ERROR FLAG

LOAD CIRCUIT 2 ERROR FLAG OUTPUT

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS
NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1

- BiCMOS Design Substantially Reduces Standby Current
- Functionally Equivalent to AM29861 and SN74ALS29861
- True Logic
- Power-Up High-Impedance State
- Package Options Include Plastic "Small Outline" Packages, Plastic Chip Carriers, and Standard Plastic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

This 10-bit bus transceiver is designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.
This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the enable inputs ($\bar{G} B A$ and $\bar{G} A B$).
The 74BCT29861 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

ENABLE INPUTS		OPERATION
$\overline{\mathrm{G} A B}$	$\overline{\mathrm{G}} \mathrm{BA}$	
L	H	A to B
H	L	B to A
H	H	Isolation
L	L	Latch A and B $(\mathrm{A}=\mathrm{B})$

DW OR NT PACKAGE
(TOP VIEW)

FN PACKAGE
(TOP VIEW)

logic symbol ${ }^{\dagger}$
${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for DW and NT packages.

Pin numbers shown are for DW and NT packages.
logic diagram (positive logic)

Pin numbers shown are for DW and NT packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions

	MIN	NOM	MAX	UNIT
$V_{C C}$ Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage	2			V
$\mathrm{V}_{\text {IL }} \quad$ Low-level input voltage			0.8	V
$\mathrm{I}^{\text {OH }} \quad$ High-level output current			-24	mA
IOL Low-level output current			48	mA
$\mathrm{T}_{\text {A }}$ Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP ${ }^{\ddagger}$	MAX	UNIT	
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2	V	
VOH		$V_{C C}=\mathrm{MIN}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	2.4			V	
		$\mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$	2					
V_{OL}			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{IOL}=48 \mathrm{~mA}$		0.35	0.5	V
1		$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA	
${ }^{\text {IH }}$	Control inputs	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
	A or B port ${ }^{\text { }}$					20		
IIL	Control inputs	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.1	mA	
	A or B port ${ }^{\text { }}$					-0.1		
los 1		$V_{C C}=M A X$,	$V_{0}=0$	-75		-250	mA	
ICC	Enabled	$V_{C C}=$ MAX,	Outputs open		22	30	mA	
	Disabled				4.5	7		

switching characteristics

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega \\ & \mathrm{R}^{2}=500 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & R 2=500 \Omega, \\ & T_{A}=\text { MIN to MAX } \\ & \hline \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A or B	B or A		4.5	6	1	8	ns
tPHL				5	7	1	8	
tPZH	$\overline{\mathrm{G}} \mathrm{AB}$ or $\mathrm{G}^{\text {B }} \mathrm{A}$	A or B		11	14	5	18	ns
tpZL				13	16	7	20	
tPHZ	$\overline{\mathrm{G}} A B$ or $\overline{\mathrm{G}} \mathrm{BA}$	A or B		7	10	3	12	ns
tplz				9	12	4	16	

[^11]

SWITCH POSITION TABLE

TEST	s1
tPLH $^{\text {P }}$	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS PULSE DURATIONS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

- BiCMOS Design Substantially Reduces Standby Current
- Functionally Equivalent to AM29863 and SN74ALS29863
- True Logic
- Power-Up High-Impedance State
- Package Options Include Plastic "Small Outline" Packages, Plastic Chip Carriers, and Standard Plastic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

This 9-bit bus transceiver is designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.
This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the enable inputs ($\overline{\mathrm{G}} \mathrm{BA} 1, \overline{\mathrm{G}} \mathrm{BA} 2, \overline{\mathrm{G}} \mathrm{AB} 1$, and $\overline{\mathrm{G}} \mathrm{AB} 2$).

The 74BCT29863 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

ENABLE INPUTS				OPERATION
GAB1	GAB2	GBA1	G̈BA2	
L	L	L	L	Latch A and B
L	L	H	X	A to B
L	L	X	H	
H	X	L	L	B to A
X	H	L	L	
H	X	H	X	
H	X	X	H	Isolation
X	H	X	H	
X	H	H	X	

fN PACKAGE
(TOP VIEW)

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for DW and NT packages.
logic diagram (positive logic)

Pin numbers shown are for DW and NT packages.

SN74BCT29863 9-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC . 7 V
Input voltage (all inputs and I/O ports) . 5.5 V
Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
recommended operating conditions

	MIN	NOM	MAX	UNIT
VCC Supply voltage	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage	2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8	V
$\mathrm{I} \mathrm{OH} \quad$ High-level output current			-24	mA
IOL Low-level output current			48	mA
$\mathrm{T}_{\text {A }}$ Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP ${ }^{\ddagger}$	MAX	UNIT	
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V	
VOH		$V_{C C}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4			V	
		$1 \mathrm{OH}=-24 \mathrm{~mA}$	2					
V_{OL}			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{IOL}=48 \mathrm{~mA}$		0.35	0.5	V
1		$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA	
IH	Control inputs	$V_{C C}=$ MAX ,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
	A or B port ${ }^{\text { }}$					20		
IIL.	Control inputs	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.1	mA	
	A or B port ${ }^{\text { }}$					-0.1		
los 1		$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{O}}=0$	-75		-250	mA	
ICC	Enabled	$V_{C C}=$ MAX,	Outputs open		22	30	mA	
	Disabled				4.5	7		

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ For I/O port, the parameters $I_{I H}$ and $I_{I L}$ include the offstate output current.
I Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

switching characteristics

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF}, \\ & R 1=500 \Omega \\ & R 2=500 \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \\ & \hline \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
tPLH	A or B	B or A		4.5	6	1	8	ns
tPHL				5	7	1	8	
tpzi	$\overline{\mathrm{G}} A B$ or $\overline{\mathrm{G}} \mathrm{B} A$	A or B		11	14	5	18	ns
tpZL				13	16	7	20	
tPHZ	$\overline{\mathrm{G}} \mathrm{AB}$ or $\overline{\mathrm{G}} \mathrm{BA}$	A or B		7	10	3	12	ns
tplZ				9	12	4	16	

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tpHZ	Open
tpLZ	Closed

voltage waveforms PULSE DURATIONS

ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, Z_{0}=50 \Omega, t_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

FIGURE 1. SWITCHING CHARACTERISTICS

Contents

Page
Ordering Instructions 3-3
Package Data 3-4

Electrical characteristics presented in this data book, unless otherwise noted, apply for circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this catalog should include a four-part type number as explained in the following example.

1. Prefix
MUST CONTAIN TWO TO FOUR LETTERS
SN

SNJ \quad\begin{tabular}{l}
Standard Prefix

MIL-STD-883 Processed and

JANB

Screened per JEDEC Standard 101

MIL-M-38510 Processed
\end{tabular}

2. Unique Circuit Description

MUST CONTAIN SIX TO NINE CHARACTERS

Examples:	54 BCT 620
	74 BCT 125
	74 BCT 2240

3. Package

MUST CONTAIN ONE OR TWO LETTERS

J, JT, N, NT (Dual-in-line packages) ${ }^{\ddagger}$
D, DW (''Small Outline"' Packages)
FK (Leadless Ceramic Chip Carriers)
FN (Leadless Plastic Chip Carriers)
(From pin-connection diagram on individual data sheet)

4. Instructions (Dash No.)

MUST CONTAIN TWO NUMBERS

-00 No special instructions

- 10 Solder-dipped leads (N and NT packages only)
${ }^{\dagger}$ For tape and reel information contact the factory.
${ }^{\ddagger}$ These circuits in dual-in-line packages are shipped in one of the carriers shown below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped in the most practical carrier. Please contact your TI sales representative for the method that will best suit your particular needs.

Dual-in-line (J, JT, N, NT)
-Slide Magazines
-A-Channel Plastic Tubing
-Barnes Carrier (N only)
-Sectioned Cardboard Box

- Individual Plastic Box

D008, D014, and D016 plastic "small outline" packages
Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Leads are within $0,25(0.010)$ radius of true position at maximum material dimension.
B. Body dimensions do not include mold flash or protrusion.
C. Mold flash or protrusion shall not exceed 0,15 (0.006).
D. Lead tips to be planar within $\pm 0,051(0.002)$ exclusive of solder.

DW016, DW020, DW024, and DW028 plastic 'small outline' packages
Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

${ }^{\dagger}$ The 28 -pin package drawing is presently classified as Advance Information.
NOTES: A. Leads are within $0,25(0.010)$ radius of true position at maximum material dimension.
B. Body dimensions do not include mold flash or protrusion.
C. Mold flash or protrusion shall not exceed $0,15(0.006)$.
D. Lead tips to be planar within $\pm 0,051(0.002)$ exclusive of solder.

FK020 and FKO28 ceramic chip carrier packages

Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid and braze seal. The packages are intended for surface mounting on solder lands on 1,27 (0.050-inch) centers. Terminals require no additional cleaning or processing when used in soldered assembly.
FK package terminal assignments conform to JEDEC Standards 1 and 2.

FN020, FN028, FN044, FN068, and FN084 plastic chip carrier packages

Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the devices are operated in high-humidity conditions. The packages are intended for surface mounting on solder lands on 1,27 (0.050) centers. Leads require no additional cleaning or processing when used in soldered assembly.

FN020, FN028, FN044, FN068, and FN084
(28-terminal package used for illustration)

NO. OF TERMINALS	A		B		c	
	MIN	MAX	MIN	MAX	MIN	max
20	9.78	10.03	8.89	9.04	7.87	8.38
	(0.385)	10.395)	(0.350)	(0.356)	(0.310)	(0.330)
28	12.32	12,57	11.43	11.58	10.41	10.92
	(0.485)	(0.495)	(0.450)	(0.456)	(0.410)	10.430)
44	17.40	17.65	16.51	16.66	15.49	16.00
	(0.685)	10.695)	(0.650)	(0.656)	(0.610)	(0.630)
68	25.02	25,27	24.13	24.33	23,11	23,62
	10.9851	(0.995)	(0.950)	10.956)	(0.910)	(0.930)
84	30.10	30.35	29.21	29.41	27.69	28.70
	(1.185)	(1.195)	(1.150)	(1.158)	(1.090)	(1.130)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. Centerline of center pin each side is within $0,10(0.004)$ of package centerline as determined by dimension B.
B. Location of each pin is within $0,127(0.005)$ of true position with respect to center pin on each side.
C. The lead contact points are planar within $0,10(0.004)$.

J014 ceramic dual-in-line package

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51(0.020) above the seating plane.

J016 ceramic dual-in-line package

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0.25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51(0.020) above the seating plane.

J020 ceramic dual-in-line package

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ('sbight-dipped") leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0.51 (0.020) above the seating plane.

JT024 ceramic dual-in-line package

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped') leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

N014 plastic dual-in-line package

This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers (see Note A). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.

N016 plastic dual-in-line package

This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.

MECHANICAL DATA

N020 plastic dual-in-line package

This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least $0,51(0.020)$ above seating plane.

NT024 plastic dual-in-line package

This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE: For all except 24 -pin packages, the letter N is used by itself since only the 24 -pin package is available in more than one row-spacing. For the 24 -pin package, the $7.62(0.300)$ version is designated NT; the $15.24(0.600)$ version is designated NW. If no second letter or row-spacing is specified, the package is assumed to have $15,24(0,600)$ row-spacing.

NOTES: A. Each pin centerline is located within $0.25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above the seating plane.

To correct your address or add an associate and to insure receipt of future updates to the General Purpose Logic mailing list, complete and return this card.

NAME 1
TITLE \qquad
COMPANY
ADDRESS \& M/S

CITY 1 STATE لــ ZIP \qquad

PHONE \qquad ــ -

\square Check here to receive General Purpose Logic Updates.
SCBO2ICB800R
Expires 12/31/89

Copyright © 1988, Texas Instruments Incorporated

To correct your address or add an associate and to insure receipt of future updates to the General Purpose Logic mailing list, complete and return this card.

NAME
TITLE \qquad
COMPANY

ADDRESS \& M/S \qquad

CITY 1
STATE \qquad ZIP \qquad

PHONE \qquad -ــ EXTENSION

\square Check here to receive General Purpose Logic Updates. SCB02ICB800R

Texas instruments incorporated Literature Response Center P.O. Box 809066
 Dallas, Texas 75380-9066

Texas Instruments Incorporated Literature Response Center P.O. Box 809066 Dallas, Texas 75380-9066

PLACE STAMP
HERE
|

Ifis Texas
INSTRUMENTS
BiCMOS Bus Interface Logic

Data Book

[^0]: *Current out of a terminal is given as a negative value

[^1]: $H=$ high level, $L=$ low level, $X=$ irrelevant

[^2]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.

[^3]: ${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^4]: ${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^5]: ${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^6]: $N A=$ Not applicable, $N C=$ No change, $X=$ Don't care
 ${ }^{\dagger}$ Summation of high-level inputs includes PARITY along with Bi inputs.
 \ddagger Output states shown assume the ERR output was previouosly high.
 ${ }^{\xi}$ In this mode, the $\overline{E R R}$ output, when clocked, shows inverted parity of the A bus.

[^7]: $N A=$ Not applicable, $N C=$ No change, $X=$ Don't care
 ${ }^{\dagger}$ Summation of low-level inputs includes PARITY along with Bi inputs.
 \ddagger Output states shown assume the $\overline{E R R}$ output was previously high.
 § In this mode, the $\overline{E R R}$ output, when clocked, shows noninverted parity of the A bus.

[^8]: NA $=$ Not applicable, NC $=$ No change, $X=$ Don't care
 \dagger Summation of high-level inputs includes PARITY along with Bi inputs.
 \ddagger Output states shown assume the ERR output was previously high.
 ${ }^{\S}$ In this mode the $\overline{E R R}$ output, when enabled, shows inverted parity of the A bus.

[^9]: NA $=$ Not applicable, NC $=$ No change, $X=$ Don't care

[^10]: ${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger These parameters include off-state output current for I/O ports only.
 \S Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed 1 second.

[^11]: ${ }^{\dagger}$ For conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions.
 ${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § For I / O port, the parameters $I_{I H}$ and $I_{I L}$ include the offstate output current.
 I Not more than one output should be shorted at a time and duration of the short circuit should not exceed 1 second.

